A collection of Discrete Set Fourier Transformation Algorithms
Project description
setFTs
This library provides functionalities for calculating the Fourier transform on set functions, based on the novel mathematical foundation of discrete signal processing on set functions [1]. We provide functionalities for:
- Initializing a set function object from a full set of function evaluations.
- Inititalizing a set function object from a queryable python function.
- Applying the fast Fourier transform algorithm [1]
- Applying sparse Fourier transform algorithm [2]
- Set function minimization algorithms [3]
- Shapley Values Calculation
1 Documentation
Full documentation of the setfunctions and plotting modules can be found at: https://ebners.github.io/setFTs_docs/ or in the Documentation_setFTs.pdf provided in the repositors
2 Requirements
setFTs uses the python library pySCIPOpt for the implementation of the MIP-based minimization algorithm. pySCIPOpt requires a working installation of the SCIP Optimization Suite. The creators of pySCIPOpt recommend using conda as it installs SCIP automatically. And allows the installation of pySCIPOpt in one command:
conda install --channel conda-forge pyscipopt
More information about installing pySCIPOpt can be found at: https://github.com/scipopt/PySCIPOpt/blob/master/INSTALL.md
3 Installation
The installation of our package works over pypi and therefore a working installation of pip is needed. The pip command to install setFTs is the following:
pip install setFTs
References
[1]
@article{Discrete_Signal_Proc,
title={Discrete signal processing with set functions},
volume={69},
DOI={10.1109/tsp.2020.3046972},
journal={IEEE Transactions on Signal Processing},
author={Puschel, Markus and Wendler, Chris},
year={2021},
pages={1039–1053}
}
[2]
@article{Sparse,
author = {Chris Wendler and
Andisheh Amrollahi and
Bastian Seifert and
Andreas Krause and
Markus P{\"{u}}schel},
title = {Learning Set Functions that are Sparse in Non-Orthogonal Fourier Bases},
journal = {CoRR},
volume = {abs/2010.00439},
year = {2020},
url = {https://arxiv.org/abs/2010.00439},
}
[3]
@article{MIPS,
author={Weissteiner,Jakob and Wendler, Chris and Seuken, Sven and Lubin,Ben and Püschel, Markus},
title={Fourier analysis-based iterative combinatorial auctions},
DOI={10.24963/ijcai.2022/78},
journal={Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence},
year={2022}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file setFTs-0.0.1.1.tar.gz
.
File metadata
- Download URL: setFTs-0.0.1.1.tar.gz
- Upload date:
- Size: 1.9 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 07259b78a5b285e44d5bcdf913176512f26ed527dd2c3aed1480cb846aebaa98 |
|
MD5 | a4717dcb6ff6833a3d4b2bb1b239d704 |
|
BLAKE2b-256 | 739c7882ad31e2ee559e514fcf816054231d06388c98b8fc483888cf98094839 |
File details
Details for the file setFTs-0.0.1.1-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: setFTs-0.0.1.1-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 1.8 MB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b71f272b118621da9345e2496a76f3d5dce267c3678f3f15261359054e098c86 |
|
MD5 | 4c334ad74dff1e617fcd4d7adf43bf33 |
|
BLAKE2b-256 | 380eb85d604df8b29a611d9d4dfe92e56c2e328d06b29008d71894e3951c5ae1 |
File details
Details for the file setFTs-0.0.1.1-cp39-cp39-manylinux1_x86_64.whl
.
File metadata
- Download URL: setFTs-0.0.1.1-cp39-cp39-manylinux1_x86_64.whl
- Upload date:
- Size: 1.8 MB
- Tags: CPython 3.9
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c0fa592f3020fc3860e30d834b1e8c3df2dc8230709ac0df7c686d34f26cf72a |
|
MD5 | 41fcddf427bba380379f0e5b08fead8f |
|
BLAKE2b-256 | 0879810289e394795d42018ede1696852487a5f13966a40f951f738e4f5ce95f |