Skip to main content

Quantify the similarity between two shapes/curves

Project description

SHAPE SIMILARITY

Workflow Codecov

:bulb: About

The package allows you to check the similarity between two shapes/curves, using Frechet distance together with Procrustes analysis. Internally, shape_similarity works by first normalizing the curves using Procrustes analysis and then calculating Fréchet distance between the curves.

:page_facing_up: Content

  • Frechet Distance

    • In mathematics, the Fréchet distance is a measure of similarity between curves that takes into account the location and ordering of the points along the curves. Imagine a person traversing a finite curved path while walking their dog on a leash, with the dog traversing a separate finite curved path. Each can vary their speed to keep slack in the leash, but neither can move backwards. The Fréchet distance between the two curves is the length of the shortest leash sufficient for both to traverse their separate paths from start to finish. Note that the definition is symmetric with respect to the two curves—the Fréchet distance would be the same if the dog were walking its owner.
  • Procrustes Analysis

    • In statistics, Procrustes analysis is a form of statistical shape analysis used to analyse the distribution of a set of shapes. To compare the shapes of two or more objects, the objects must be first optimally "superimposed". Procrustes superimposition (PS) is performed by optimally translating, rotating and uniformly scaling the objects. In other words, both the placement in space and the size of the objects are freely adjusted. The aim is to obtain a similar placement and size, by minimizing a measure of shape difference called the Procrustes distance between the objects.

:rocket: Technologies

:package: Installation

  1. Install with pip
$ python -m pip install shapesimilarity
  1. Install from source code
$ git clone https://github.com/nelsonwenner/shape-similarity.git

$ python -m pip install .
  1. Run the tests
$ python -m pip install pytest

$ python -m pytest

:information_source: Example useage

from shapesimilarity import shape_similarity
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(1, -1, num=200)

y1 = 2*x**2 + 1
y2 = 2*x**2 + 2

shape1 = np.column_stack((x, y1))
shape2 = np.column_stack((x, y2))

similarity = shape_similarity(shape1, shape2)

plt.plot(shape1[:,0], shape1[:,1], linewidth=2.0)
plt.plot(shape2[:,0], shape2[:,1], linewidth=2.0)

plt.title(f'Shape similarity is: {similarity}', fontsize=14, fontweight='bold')
plt.show()
  • You can further customize the precision of the shape_similarity function by changing the rotation (default 10). Increasing it will increase accuracy. You can also disable rotation correction completely (default True).
    # disable rotation correction entirely
    shape_similarity(shape1, shape2, checkRotation=False)
    
    # higher accuracy, but slower
    shape_similarity(shape1, shape2, rotation=30)
    

:chart_with_downwards_trend: Results

plot1 plot2

:pushpin: Referencies


Made with :hearts: by Nelson Wenner :wave: Get in touch!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

shapesimilarity-1.0.0.tar.gz (5.4 kB view details)

Uploaded Source

Built Distribution

shapesimilarity-1.0.0-py3-none-any.whl (6.6 kB view details)

Uploaded Python 3

File details

Details for the file shapesimilarity-1.0.0.tar.gz.

File metadata

  • Download URL: shapesimilarity-1.0.0.tar.gz
  • Upload date:
  • Size: 5.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for shapesimilarity-1.0.0.tar.gz
Algorithm Hash digest
SHA256 d83cc610219bbdd353b9d1f3df9768f6aa499742d29cbe67335ee4e781dbb563
MD5 5edccb858f49b0ff1b75ae8d489ae826
BLAKE2b-256 486a8c127ab1ddedbc6b5af2cd072dbfe95460d2785d76c113006d5bbfa861b3

See more details on using hashes here.

File details

Details for the file shapesimilarity-1.0.0-py3-none-any.whl.

File metadata

File hashes

Hashes for shapesimilarity-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 28f70c1142a2c05a45e2e2e365f687574b3cadbaf1160942e2b1f75e147b52f6
MD5 c9337a820ab55981635d0aff289e248a
BLAKE2b-256 28b6a2008a04bd485d460d2db40bcd48f64ff354a0f27aa6dffb7dafaab51bbe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page