Convert some data into Panda DataFrames
Project description
Convert some data into Panda DataFrames
British Petroleum (BP)
It parse sheet like Primary Energy Consumption
(not like Primary Energy - Cons by fuel
).
Open: http://www.bp.com/statisticalreview or https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
Download Statistical Review of World Energy – all data
.
Use:
from shifter_pandas.bp import UNITS_ENERGY, BPDatasource
shifter_ds = BPDatasource("bp-stats-review-2021-all-data.xlsx")
df = shifter_ds.datasource(units_filter=UNITS_ENERGY, regions_filter=["Switzerland"])
df
Swiss Office Federal of Statistics (OFS)
From https://www.bfs.admin.ch/bfs/fr/home/services/recherche/stat-tab-donnees-interactives.html create a stat table.
Click on À propos du tableau
Click on Rendez ce tableau disponible dans votre application
Use:
from shifter_pandas.ofs import OFSDatasource
shifter_ds = OFSDatasource("<URL>")
df = shifter_ds.datasource(<Requête Json>)
df
And replace <URL>
and <Requête Json>
with the content of the fields of the OFS web page.
Interesting sources
- Parc de motocycles par caractéristiques techniques et émissions
- Bilan démographique selon l'âge et le canton
Our World in Data
Select a publication.
Click Download
.
Click Full data (CSV)
.
Use:
import pandas as pd
from shifter_pandas.wikidata_ import WikidataDatasource
df_owid = pd.read_csv("<file name>")
wdds = WikidataDatasource()
df_wd = wdds.datasource_code(wikidata_id=True, wikidata_name=True, wikidata_type=True)
df = pd.merge(df_owid, df_wd, how="inner", left_on='iso_code', right_on='Code')
df
Interesting sources
World Bank
Open https://data.worldbank.org/
Find a chart
In Download
click CSV
Use:
from shifter_pandas.worldbank import wbDatasource
df = wbDatasource("<file name>")
df
Interesting sources
Wikidata
By providing the wikidata_*
parameters, you can ass some data from WikiData.
Careful, the WikiData is relatively slow then the first time you run it il will be slow. We use a cache to make it fast the next times.
You can also get the country list with population and ISO 2 code with:
from shifter_pandas.wikidata_ import (
ELEMENT_COUNTRY,
PROPERTY_ISO_3166_1_ALPHA_2,
PROPERTY_POPULATION,
WikidataDatasource,
)
shifter_ds = WikidataDatasource()
df = shifter_ds.datasource(
instance_of=ELEMENT_COUNTRY,
with_id=True,
with_name=True,
properties=[PROPERTY_ISO_3166_1_ALPHA_2, PROPERTY_POPULATION],
limit=1000,
)
df
Contributing
Install the pre-commit hooks:
pip install pre-commit
pre-commit install --allow-missing-config
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file shifter_pandas-0.4.0.tar.gz
.
File metadata
- Download URL: shifter_pandas-0.4.0.tar.gz
- Upload date:
- Size: 14.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 33610b0d2fdfe27b169b44c49beac9f13343cef6c2ead6d28a82b4a24b0a4e6e |
|
MD5 | 7be1a088dddf1134b8283f6acea7e772 |
|
BLAKE2b-256 | 7bbde195d094411aa5c38f404e0b6f924ac6bd0b024e90f2d27d95367878a957 |
File details
Details for the file shifter_pandas-0.4.0-py3-none-any.whl
.
File metadata
- Download URL: shifter_pandas-0.4.0-py3-none-any.whl
- Upload date:
- Size: 15.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5e6367c09b3ea0715526ea386198bfdefc9080817df4c8c75ccedf9570be5f08 |
|
MD5 | 90fb51f9102ebacd56a5a9199a70020a |
|
BLAKE2b-256 | 82b747fa28cd33dc4657168709691513d501bece35d39d2d35294253cea80832 |