Skip to main content

A set of tools to load, preprocess and analyze data collected through the MultiSensor Data Collection App

Project description

SideSeeing Tools

SideSeeing Tools is a collection of scripts designed to load, preprocess, and analyze data gathered through the MultiSensor Data Collection App.

Installation

pip install sideseeing-tools

Usage

Create a dataset

from sideseeing_tools import sideseeing

ds = sideseeing.SideSeeingDS(root_dir='/home/user/my-project')

# Available iterators
#   .instances  // Tip: dictionary of instances (key=name, value=SideSeeingInstance)
#   .iterator   // Tip: for i in ds.iterator: i.name

# Available attributes and methods
#   .metadata() // Tip: generates and prints the dataset metadata
#   .size       // Tip: shows the number of instances  
#   .sensors    // Tip: a dictionary containing the names of the available sensors

Get a random sample from the dataset

my_sample = ds.instance

Check the available sensors by instance

ds.sensors
# This command will produce output like this:

{
    # A key representing the number of available axes
    'sensors1': {
        # A key representing the sensor name
        'lps22h barometer sensor': {
            # Keys representing the instances where the sensor data is found
            'FhdFastest#S10e-2024-08-01-10-42-43-354',
            'FhdGame#S10e-2024-08-01-10-25-08-383',
            'FhdNormal#S10e-2024-08-01-10-02-18-947',
            'FhdUi#S10e-2024-08-01-10-13-50-369'
        },
        'tcs3407 uncalibrated lux sensor': {
            'FhdFastest#S10e-2024-08-01-10-42-43-354',
            ...
        },
        ...
    },
    'sensors3': {
        'ak09918c magnetic field sensor': {...},
        'bmi160_accelerometer accelerometer non-wakeup': {
            'FhdFastest#Mia3-2024-08-01-10-42-44-639',
            'FhdNormal#Mia3-2024-08-01-10-02-22-118',
            ...
        },
        ...
    },
    'sensors6': {
        ...
    }
}

Get accelerometer data from the sample

my_sample = ds.instances['FhdNormal#Mia3-2024-08-01-10-02-22-118']
my_sample_accel_data = my_sample.sensors3['bmi160_accelerometer accelerometer non-wakeup']
my_sample_accel_data
Datetime UTC x y z Time (s)
0 2024-03-21 19:33:01.550000 9.34247 -0.270545 3.10767 0
1 2024-03-21 19:33:01.561000 9.51725 -0.347159 3.00233 0.011
2 2024-03-21 19:33:01.571000 9.46458 -0.407014 2.81079 0.021
3 2024-03-21 19:33:01.581000 9.35205 -0.395043 2.79164 0.031
4 2024-03-21 19:33:01.590000 9.36402 -0.263362 2.77488 0.04

Extract a snippet from a sample (video and sensor data)

my_sample.extract_snippet(
    start_time=2,                        # Start time of the snippet (in seconds)
    end_time=17,                         # End time of the snippet (in seconds)
    output_dir='/home/user/snippet_2_17' # Directory to save the extracted snippet
)

Running the command extract_snippet will generate one file for the video (with audio), one file for consumption data, one file for GPS data, and one file for each sensor type (single-axis, three-axis, three-axis uncalibrated) present in the instance. See an illustrative example in the following file tree.

home/
├─ user/
│  ├─ snippet_2_17/
│  │  ├─ consumption.2_17.csv
│  │  ├─ gps.2_17.csv
│  │  ├─ sensors.one.2_17.csv
│  │  ├─ sensors.three.2_17.csv
│  │  ├─ sensors.three.uncalibrated.2_17.csv
│  │  ├─ video.2_17.mp4

Extract only video snippets

It is possible to extract a snippet from a video (and only the video) using the extract_video_snippet function.

from sideseeing_tools import media

# Extract a 15-second snippet from the video, beginning at the 3-second mark and ending at the 18-second mark
media.extract_video_snippet(
    source_path=my_sample.video,    # Path to the input mp4 file
    start_second=3,                 # Start time of the snippet (in seconds)
    end_second=18,                  # End time of the snippet (in seconds)
    output_path='my_snippet.mp4'    # Path to save the extracted snippet
)

Iterate over the samples

for i in ds.iterator:
    print(i.name, i.video)

Create a plotter

from sideseeing_tools import plot

plotter = plot.SideSeeingPlotter(ds, taxonomy='/home/user/my-project/taxonomy.csv')

# Available methods:
#   .generate_video_for_sensor()
#   .plot_dataset_cities()
#   .plot_dataset_map()
#   .plot_dataset_tags_matrix()
#   .plot_dataset_tags()
#   .plot_instance_audio()
#   .plot_instance_map()
#   .plot_instance_sensors3_and_audio()
#   .plot_instance_video_frames_at_times()
#   .plot_instance_video_frames()
#   .plot_sensor()
#   .plot_sensors()

Additional tips

We suggest implementing the following folder structure: create a directory named data to contain all recordings. By doing so, when instantiating the SideSeeingDataset, a metadata.csv file will be generated in the root directory. Here is the command to instantiate a dataset:

ds = sideseeing.SideSeeingDS('/home/user/my-project', subdir='data', name='MyDataset')

And here is the suggested folder structure:

my-project/
├─ data/
│  ├─ place01/
│  │  ├─ route01/
│  │  │  ├─ consumption.csv
│  │  │  ├─ gps.csv
│  │  │  ├─ metadata.json
│  │  │  ├─ sensors.one.csv
│  │  │  ├─ sensors.three.csv
│  │  │  ├─ sensors.three.uncalibrated.csv
│  │  │  ├─ video.gif
│  │  │  ├─ video.mp4
│  │  │  ├─ video.wav
│  │  ├─ route02/
│  ├─ place02/
│  ├─ place03/
├─ metadata.csv
├─ taxonomy.csv

Sensor data specification before SideSeeing conversion

The following data outlines the specifications of sensor content before SideSeeing conversion, i.e., when accessing them directly through the files generated by the MultSensor Data Collection tool.

File consumption.csv

datetime_utc battery_microamperes
2024-03-21T19:38:04.961Z -1431
2024-03-21T19:38:05.961Z -1011
2024-03-21T19:38:06.961Z -2216

File gps.csv

datetime_utc gps_interval accuracy latitude longitude
2024-03-21T19:38:10.309Z 15 16.0 -23.5645676 -46.7395994
2024-03-21T19:38:38.033Z 15 57.639 -23.5645617 -46.739602
2024-03-21T19:38:54.120Z 15 26.611 -23.5645528 -46.7396658

File sensors.one.csv

timestamp_nano datetime_utc name axis_x accuracy
0 2024-03-13T13:40:27.243Z Palm Proximity Sensor 5.0 3
712657771915658 2024-03-21T19:38:05.015Z TCS3407 Uncalibrated lux Sensor 1810.0 3
712657931915658 2024-03-21T19:38:05.174Z TCS3407 Uncalibrated lux Sensor 1812.0 3

File sensors.three.csv

timestamp_nano datetime_utc name axis_x axis_y axis_z accuracy
712657652031560 2024-03-21T19:38:04.895Z LSM6DSO Acceleration Sensor 9.603442 -0.10295067 3.9959226 3
712657673895658 2024-03-21T19:38:04.916Z LSM6DSO Acceleration Sensor 9.823709 -0.38067806 3.9097314 3
712657652031560 2024-03-21T19:38:04.895Z LSM6DSO Gyroscope Sensor 0.113544576 0.42852196 0.083306745 3

File sensors.three.uncalibrated.csv

timestamp_nano datetime_utc name axis_x axis_y axis_z delta_x delta_y delta_z accuracy
712657851915658 2024-03-21T19:38:05.094Z Uncalibrated Magnetic Sensor 268.56 -9.54 -230.45999 255.48 -2.28 -227.94 3
712657852615658 2024-03-21T19:38:05.096Z Gyroscope sensor UnCalibrated 0.044593163 -0.13439035 0.07086037 -0.003009122 -0.016193425 -0.0026664268 3
712657862615658 2024-03-21T19:38:05.105Z Gyroscope sensor UnCalibrated 0.042760566 -0.05009095 0.100792766 -0.003009122 -0.016193425 -0.0026664268 3
712657874678965 2024-03-21T19:38:05.118Z Uncalibrated Magnetic Sensor 268.62 -8.639999 -231.48 255.48 -2.28 -227.94 3
712657872615658 2024-03-21T19:38:05.116Z Gyroscope sensor UnCalibrated 0.064751714 -0.007330383 0.118507855 -0.003009122 -0.016193425 -0.0026664268 3

List of SideSeeingInstance attributes/methods

Attribute or method Description
geolocation_points Dictionary containing geolocation data, including latitude and longitude coordinates representing geographical points.
geolocation_center Latitude and longitude coordinates representing the geographic center of a specific area.
audio Path to the audio file associated with the collected data.
gif Path to the GIF file associated with the collected data.
video Path to the video file associated with the collected data.
sensors1 Dictionary containing data from one-axis sensors.
sensors3 Dictionary containing data from three-axis sensors.
sensors6 Dictionary containing data from six-axis sensors, including uncalibrated data.
label List of categories and tags representing the taxonomy of sidewalks.
video_start_time Start time of the video associated with the collected data.
video_stop_time Stop time of the video associated with the collected data.
extract_snippet Extracting a snippet from the sample (video, sensor, gps and consumption data).

Author

Rafael J P Damaceno

About us

The SideSeeing Project aims to develop methods based on Computer Vision and Machine Learning for Urban Informatics applications. Our goal is to devise strategies for obtaining and analyzing data related to urban accessibility. Take a look at our website.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sideseeing_tools-0.5.1.tar.gz (20.5 kB view details)

Uploaded Source

Built Distribution

sideseeing_tools-0.5.1-py3-none-any.whl (17.9 kB view details)

Uploaded Python 3

File details

Details for the file sideseeing_tools-0.5.1.tar.gz.

File metadata

  • Download URL: sideseeing_tools-0.5.1.tar.gz
  • Upload date:
  • Size: 20.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.18

File hashes

Hashes for sideseeing_tools-0.5.1.tar.gz
Algorithm Hash digest
SHA256 8d437eaf3983a92e7b84293d925116799e60bfc77ff67c209cf3d4b7ad7681f8
MD5 3f265211031caeaf65b5094ad85362dc
BLAKE2b-256 e89c3e616389e3e94601e24e9971a0230b236dbeebe041739fabb355ea3bcfaf

See more details on using hashes here.

File details

Details for the file sideseeing_tools-0.5.1-py3-none-any.whl.

File metadata

File hashes

Hashes for sideseeing_tools-0.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 952beb9e7c5ee325590301c95e74314c75550a0bc656daea56f0d2ea001dd246
MD5 d0eaa9cf664a52f8219210fde15b74e1
BLAKE2b-256 05a426431ce35467a4e5f1e4cbf313116a13d8c1cf1e6003570b63de06aa2aeb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page