Skip to main content

package for measuring the similarity of two texts

Project description

similarity_check

similarity_check is a Python package for measuring the similarity of two texts.

Installation

Use the package manager pip to install similarity_check.

pip install similarity_check 

Usage

sentence tranformer

documentation

  • sentence_tranformer( targets: Union[List[str], pd.DataFrame], target_group: Optional[Union[List[str], pd.DataFrame]]=None, target_cols: Optional[str]=None, device: Optional[str] = None, model: Optional[str]=None, lang: Optional[str]='en', only_include: Optional[List[str]]=None, encode_batch: Optional[int] = 32, encode_target: Optional[bool] = True, remove_punct: Optional[bool]=True, remove_stop_words: Optional[bool]=True, stemm: Optional[bool]=False ):
    • parameters:
      • targets: dataframe or list of targets text to compare with.
      • target_group (optional): goups ids for the target to match only a single target for each group, can either provide list of ids,
      • or the column name in the target dataframe.
      • target_cols (partially optional): the target column names used to match, must be specified for dataframe matching.
      • device: the device to do the encoding on operations in (cpu|cuda),
      • model (optional): a string of the sentence tranformer model, to use instead of the default one, for more details.
      • lang (optional): the languge of the model ('en'|'ar').
      • only_include (optional): used only for dataframe matching, allow providing a list of column names to only include for the target matches, provide empty list to get only target_col.
      • encode_batch (optional): the number of sentences to encode in a batch.
      • encode_target: boolean flag to indicate whatever to enocde the targets when initilizing the object (to cache target encoding).
      • remove_punct: boolean flag to indicate whatever to remove punctuations.
      • remove_stop_words: boolean flag to indicate whatever to remove stop words.
      • stemm: boolean flag to indicate whatever to do stemming.
  • sentence_tranformer.match( source: Union[List[str], pd.DataFrame], source_mapping: Optional[Union[str, Dict]]=None, topn: Optional[int]=1, return_match_idx: Optional[bool]=False, threshold: Optional[float]=0.5, batch_size: Optional[int]=128 ) -> pd.DataFrame:
    • parameters:
      • source: dataframe or list of input texts to find closest match for.
      • source_mapping (partially optional): a dictionary with the key being the target column name, and the value being a tuple of two values (source column name, the weight for this match), if a string is passed it and one target was only passed it will be mapped to the that target, with a the full weight of 1 must be specified for dataframe matching.
      • topn: number of matches to return.
      • threshold: the lowest threeshold to ignore matches below it.
      • batch_size: the size of the batch in inputs to match with targets (to limit space usage).
    • returns:
      • a data frame with 3 columns (source, target, score), and two extra columns for each extra match (target_2, score_2 ...), and an optional extra column for each match containg the match index, if return_match_idxs set to True.

examples

the given examples will only use english to present the output in the correct format, if you like to use arabic matching change the lang attribute of the sentence_tranformer object to 'ar'.

using lists
from similarity_check.checkers import sentence_tranformer_checker

X = ['test', 'remove test']
y =  ['tests', 'stop the test', 'testing']

### arabic example:
# X = ['حذف الاختبار', 'اختبار']
# y =  ['اختبارات', 'ايقاف الاختبار']
# st = sentence_tranformer(X, lang='ar')

st = sentence_tranformer(X)
match_df = st.match(y, topn=4, return_match_idx=True, threshold=0.6)

output:

source score prediction match_idx score_2 prediction_2 match_idx_2 score_3 prediction_3 match_idx_3 score_4 prediction_4 match_idx_4
test 0.922843 tests 0 0.908599 testing 2 0.721023 stop the test 1
remove test 0.728872 stop the test 1 nan nan nan nan
using dataframes
from similarity_check.checkers import sentence_tranformer_checker

X = pd.DataFrame({
    'text': ['Cholera, a unspecified', 'remove test'],
    'id': [1, 2],
}
)

y = pd.DataFrame({
    'new_text': ['Cholera', 'stop the test', 'testing'],
    'new_id': [1, 2, 3],
    'tags': ['pos', 'neg', 'pos'],
    'num': [10, 22, 40],
    'day': [3, 5, 2],
}
)

st = sentence_tranformer_checker(y, target_cols='new_text',target_group='tags', only_include=['new_id'])
match_df = st.match(X, source_mapping={'new_text': ('text', 1)}, topn=4, threshold=0.6, batch_size=1)

output:

text id score_1 new_text_1 new_id_1 score_2 new_text_2 new_id_2 score_3 new_text_3 new_id_3 score_4 new_text_4 new_id_4
test 1 0.922843 tests 1 0.908599 testing 3 0.721023 stop the test 2
remove test 2 0.728872 stop the test 2

word mover distance (deprecated)

english

# for medical use #
# from gensim.models import KeyedVectors
# download the model from here: https://github.com/ncbi-nlp/BioSentVec
# model = KeyedVectors.load_word2vec_format('BioWordVec_PubMed_MIMICIII_d200.vec.bin', binary=True)

# for general usage #
import gensim.downloader as api
from similarity_check.checkers import word_mover_distance

model = api.load('glove-wiki-gigaword-300')

X = ['test now', 'remove test']
y =  ['tests', 'stop the test']

wmd = word_mover_distance(X, y, model)
wmd.clean_data()
match_df = wmd.match(topn=3)

arabic

from gensim.models import Word2Vec
from similarity_check.checkers import word_mover_distance

# download the embedding from here: https://github.com/bakrianoo/aravec (N-Grams Models, Wikipedia-SkipGram, Vec-Size:300)
model = Word2Vec.load('full_grams_sg_300_wiki/full_grams_sg_300_wiki.mdl')
# take the keydvectors as the model
model = model.wv

X = ['حذف الاختبار', 'اختبار']
y =  ['اختبارات', 'ايقاف الاختبار']

wmd = word_mover_distance(X, y, model)
wmd.clean_data()
match_df = wmd.match(topn=3)
match_df
  • word_mover_distance(source_names, target_names, model):
    • parameters:
      • source_names: a list of input texts to find closest match for.
      • target_names: a list of targets text to compare with.
      • model (optional): a keyed vectors model (embeddings) to use for more details.
  • word_mover_distance.clean_data(remove_punct=True, remove_stop_words=True, stemm=False, lang='en'):
    • parameters:
      • remove_punct: boolean flag to indicate whatever to remove punctuations.
      • remove_stop_words: boolean flag to indicate whatever to remove stop words.
      • stemm: boolean flag to indicate whatever to do stemming.
      • lang: language of the text to clean ('en'|'ar').
  • sentence_tranformer.match(topn=1, return_match_idx=False):
    • parameters:
      • topn: number of matches to return.
      • return_match_idxs: return an extra column for each match containing the index of the match within the target_names.
    • returns:
      • a data frame with 3 columns (source, target, score), and two extra columns for each extra match (target_2, score_2 ...), and an optional extra column for each match containg the match index, if return_match_idxs set to True.

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

Please make sure to update tests as appropriate.

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

similarity_check-0.1.17.tar.gz (8.1 kB view hashes)

Uploaded Source

Built Distribution

similarity_check-0.1.17-py3-none-any.whl (9.1 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page