Skip to main content

Pythonic interface to access DICOM data on an Orthanc Server

Project description

SimpleOrthanc: Pythonic Interface for Orthanc

Orthanc

Orthanc is an open source and lightweight dicom server

More on Orthanc:

orthanc

SimpleOrthanc

SimpleOrthanc uses the Orthanc api to communicate with the the Orthanc server. SimpleOrthanc and enables the following functionality with justa few lines of Python code:

  • connection to an orthanc server.
  • Selecting patients, studies, series, instances
  • Downloading of selected dicom patients, studies, series, instances
  • Uploading Dicom files to the Orthanc Server
  • Introspection dicom tags for selected items.
  • Retrieving selected pydicom headers
  • Retrieve pixel array in numpy format for selected series, for multislice data this will be a 3D volume.

Connect to an orthanc server

To connect to a orthanc server the ip adress, port, username and password should usually be specified. A connection is set up as follows:

import SimpleOrthanc

orthanc = SimpleOrthanc.Orthanc(host='127.0.0.1'
                                port=8042,
                                username='orthanc_user',
                                password='orthanc_password')
                            

Note when the Orthanc server runs on the local machine listens to the default port 8042 and no username and password are setup, the connection can be initiated like:

orthanc = SimpleOrthanc.Orthanc()

To get information about the number of patients, studies, series, or instances on the Orthanc server do:

orthanc.patient_count
orthanc.study_count
orthanc.series_count
orthanc.instance_count

Retrieving Dicom information

To obatain information of specific dicom tags:

patient_names = orthanc.PatientNames

or

series_descriptions = orthanc.SeriesDescriptions

Information values for any dicom tag for the entire database can be obtained using this method.

Applying a selection

To select data on the Orthanc server the following lines of code can be used:

orthanc.select(PatientName='JaneDoe', StudyDescription='CT Examination', ...)

Any dicom tag can be used to select data except for DICOM sequences. To obtain information about the number of patients, studies, series, or instances on the Orthanc server do (again):

orthanc.patient_count
orthanc.study_count
orthanc.series_count
orthanc.instance_count

And to obtain the current selection:

selection = orthanc.selection

When a selection is applied and information the value of a dicom tag is asked, only the values within the current select are returned.

so orthanc.PatientName will only return JaneDoe in the above example. And orthanc.SeriesDescriptions will return all dicom SeriesDescriptions for patient 'JaneDoe' and study with description 'CT Examination'

Clearing a selection

Use orthanc.reset() to clear the current selection. And use orthanc.reset('PatientName') to remove a single dicom tag from the current selection.

Downloading and Uploading Dicom Data

To download (all) dicom data to a specific folder for the current selection do:

files = orthanc.download(folder)

If no folder is specified the files are downloaded to a system temp folder. The temp folder is frequently cleared. A complete list of files with full path is returned.

orthanc.upload_file(file, test_dicom=True)

Will upload a single dicom file to the Orthanc Server. Optional a file can be tested if it is a dicom file prior to upload. If you have a very fast (local) connection to the Orthanc server this might slow down the upload. If your connection is very slow (remote internet connection) this may speed up the upload since a non dicom file is catched before sending.

An entire list of files can be uploaded using the same command:

orthanc.upload_file(file_list, test_dicom=True)

And finally an entire directory with files can be uploaded by:

orthanc.upload_folder(folder, test_dicom=True, recursive=True)

It can be specified if files are found in the entire folder tree (recursive=True) or just in the folder itself (recursive=False). Recursive is False by default.

For deleting studies from the server use:

orthanc.delete_selected_patient() orthanc.delete_selected_study() orthanc.delete_selected_series()

Warning this action cannot be undone. When deleting the selected patient or study, series (and instances) of this patient or study that are not in the selection will also be deleted!

use orthanc.refresh() to refresh the connection with orthanc to make the newly uploaded visible. Also use refresh after deleting to remove deleted items from the local cache.

Obtaining Dicom Headers

The header can be obtained as a pydicom dataset when a single instance is selected:

header = orthanc.get_header()

If multiple instances are selected:

headers = orthanc.get_headers()

Will retrieve a list of all dicom headers. It may take some time to obtain all headers for a large number of instances. Specify an index to obtain a single header when multiple instances are selected:

headers = orthanc.get_headers(index=0)

Will retrieve only the first header.

Pydicom headers are (re)created from a json response from the orthanc server. A few dicom tags might not convert into the pydicom header. To see which tags are excluded set the silent flag to False:

headers = orthanc.get_headers(index=0, silent=False)

Obtaining pixel data

The Orthanc api offers the possibility to directly get the pydicom pixel data.

numpy_array = orthanc.get_array()

Will obtain all pixel data for a single series. If multiple instances are present in the series, the pixel arrays are sorted by the the orthanc server into a 3D volume of size MNS*C. Where M and N are the number of pixels, S the number of slices and C the number of color channels (1 for grayscale, 3 for color).

Sorting data

When a single series is selected, it is possible to sort the instances by the value of a specific dicom tag. For example:

orthanc.sort_by('SliceLocation')

or

orthanc.sort_by('InstanceNumber', order='descending')

Sort order is ascending by default. When calling the get_headers method, the headers will be a list in the sorted order. Same for reading dicom tags:

orthanc.SliceLocation will now return a list in the sorted order.

An exception is the get_array method which gives the same result regardless of the sorting order. 3D arrays are composed by the orthanc server which always uses a default (slice) sorting order (probably using the ImagePositionPatient and ImageOrientationPatient dicom tags).

Dicom Tags

orthanc.PatientName will retrieve a list of unique patient names in the database. It is also possible to obtain the values for each patient.

orthanc.get_dicom_tag('PatientName', unique=False)

Will give a list of PatientNames on the orthanc server. PatientNames may have multiple entries on the server.

orthanc.get_all_dicom_tags()

Will return all Dicom tag names that are available for the current selection. If multiple series are selected this will return the main dicom tags (see below). If a single serie is selected this will return all available tags in the first instance of the series.

Performance

Orthanc is a very light weight and fast dicom server. The API offers little overhead is is very fast. There are some limitations however. First of all when there a huge number of instances in your current selection, it may take a while to obtain tag values / headers etc.

The Orthanc API exposes a subset of dicom tags directly. This subset can is obtained by:

fast_tags = orthanc.interface.main_dicom_tags

Using these tags in selections or obtain values for these tags is really fast. However for tags at the Patient Level, selections and obtaining values is much faster than tags at the Instance Level. There are usually far less Patients in the database than there are Instances.

Tags that are not main_dicom_tags are always queried at Instance Level, since there is no easy discrimination to which dicom level a specific tag belongs. Therefor using these tags hamper performance.

One line code example

PyDicom can be used very efficently in just one line of code. Connecting, communicating, querying, downloading, slice sorting and reading pixel data can be done by:

from SimpleOrthanc import Orthanc
image = Orthanc().select(PatientName='JaneDoe', 
                         SeriesDescription='ct_scan').get_array()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

simple-orthanc-0.9.9.2.tar.gz (23.0 kB view details)

Uploaded Source

File details

Details for the file simple-orthanc-0.9.9.2.tar.gz.

File metadata

  • Download URL: simple-orthanc-0.9.9.2.tar.gz
  • Upload date:
  • Size: 23.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for simple-orthanc-0.9.9.2.tar.gz
Algorithm Hash digest
SHA256 718b0b9c1cd03aa3f0b71937656c94a49a91a47327f1c393c09fe6117bd70faa
MD5 c2ef0fa03a1efea110bb48f6ad069c4a
BLAKE2b-256 628416de8a30f101c23b9e752c70c0d2e4addb82cb6f7fb2c92b30143a086de6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page