Simple version of the Iterative Closest Point (ICP) algorithm
Project description
simpleICP
This package contains an implementation of a rather simple version of the Iterative Closest Point (ICP) algorithm.
Documentation
This python implementation is just one of several (almost identical) implementations of the ICP algorithm in various programming languages. They all share a common documentation here: https://github.com/pglira/simpleICP
Installation
You can install the simpleicp package from PyPI:
pip install simpleicp
How to use
from simpleicp import PointCloud, SimpleICP
import numpy as np
# Read point clouds from xyz files into n-by-3 numpy arrays
X_fix = np.genfromtxt("bunny_part1.xyz")
X_mov = np.genfromtxt("bunny_part2.xyz")
# Create point cloud objects
pc_fix = PointCloud(X_fix, columns=["x", "y", "z"])
pc_mov = PointCloud(X_mov, columns=["x", "y", "z"])
# Create simpleICP object, add point clouds, and run algorithm!
icp = SimpleICP()
icp.add_point_clouds(pc_fix, pc_mov)
H, X_mov_transformed, rigid_body_transformation_params = icp.run(max_overlap_distance=1)
This should give this output:
Consider partial overlap of point clouds ...
Select points for correspondences in fixed point cloud ...
Estimate normals of selected points ...
Start iterations ...
iteration | correspondences | mean(residuals) | std(residuals)
orig:0 | 951 | 0.0401 | 0.2397
1 | 950 | 0.0027 | 0.1356
2 | 889 | 0.0026 | 0.0586
3 | 897 | 0.0020 | 0.0407
4 | 873 | 0.0004 | 0.0303
5 | 854 | 0.0004 | 0.0245
6 | 847 | 0.0003 | 0.0208
7 | 826 | -0.0006 | 0.0154
8 | 799 | 0.0005 | 0.0099
9 | 787 | 0.0002 | 0.0068
10 | 783 | -0.0001 | 0.0047
11 | 779 | -0.0001 | 0.0037
12 | 776 | -0.0000 | 0.0033
13 | 776 | -0.0000 | 0.0033
Convergence criteria fulfilled -> stop iteration!
Estimated transformation matrix H:
[ 0.984804 -0.173671 -0.000041 0.000420]
[ 0.173671 0.984804 0.000051 -0.000750]
[ 0.000032 -0.000057 1.000000 0.000054]
[ 0.000000 0.000000 0.000000 1.000000]
... which corresponds to the following rigid body transformation parameters:
parameter | est.value | est.uncertainty | obs.value | obs.weight
alpha1 | -0.002906 | 0.004963 | 0.000000 | 0.000000
alpha2 | -0.002353 | 0.002339 | 0.000000 | 0.000000
alpha3 | 10.001317 | 0.006276 | 0.000000 | 0.000000
tx | 0.000420 | 0.000459 | 0.000000 | 0.000000
ty | -0.000750 | 0.000974 | 0.000000 | 0.000000
tz | 0.000054 | 0.000209 | 0.000000 | 0.000000
(Unit of est.value, est.uncertainty, and obs.value for alpha1/2/3 is degree)
Finished in 4.320 seconds!
Note that bunny_part1.xyz
and bunny_part2.xyz
are not included in this package. They can be downloaded (among other example files) here.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file simpleicp-2.0.3.tar.gz
.
File metadata
- Download URL: simpleicp-2.0.3.tar.gz
- Upload date:
- Size: 13.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2eacc9783ab16c3a427ab77d973c82abb721e54e4e5856853eb03aadf4d8f278 |
|
MD5 | 5bd05cb7d20393ca80628f162c6f70c2 |
|
BLAKE2b-256 | bded73c9473a4c615c8f305a108ce334b01fb398a88cffb82e7ea89eca744ac1 |
File details
Details for the file simpleicp-2.0.3-py3-none-any.whl
.
File metadata
- Download URL: simpleicp-2.0.3-py3-none-any.whl
- Upload date:
- Size: 14.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f32afc73b9e64a0c17a1e7a01ae70652f3434fb1dfc1706e3ae4f0b040502b19 |
|
MD5 | e733cadd93eb2eaf4784ee31a21d49db |
|
BLAKE2b-256 | cb944e08ff27cfd55ee6fc8368c29c762ab6eb6484c1563ac97061756910bf34 |