Generating synthetic polyps and corresponding mask using pretrained SinGAN-Seg and Style tranfering functionalities.
Project description
singan-seg-polyp
Install pip package
pip install singan-seg-polyp
Import required packages
from singan_seg_polyp import generate_data, prepare_requirements
Prepare checkpoints
Help on function prepare_checkpoints in module singan_seg_polyp.prepare_requirements:
prepare_checkpoints(path_to_checkpoints: str, link_keys=['link1', 'link2', 'link3', 'link4'], real_data=True, *args, **kwargs) -> str
'''
The main function preparing checkpoints for pre-trained SinGANs of Polyp images.
Parameters
-----------
path_to_checkpoints: str
A directory path to download checkpoints.
link_keys: list
A list of link keys: link1, link2, link3, link4. One or multiple link keys can be put in this list.
real_data: bool
If True, the real images and masks used to train SinGANs will be downloaded to the checkpoint directory.
Return
------
checkpoint_paths_list, real_image_mask_pair_list
A sorted list of paths to downloaded checkpoints.
A sorted (image_path, mask_path) tuple list.
'''
out_paths = prepare_requirements.prepare_checkpoints("./singan_polyp_checkpoints", link_keys=["link1", "link2", "link3", "link4"])
Parameters
-
path_to_checkpoints -- A path to save checkpoints. The prepare_checkpoints() function checks the availability of pre-downloaded checkpoints. So, the use can run the save command twice without any downlaod overhead.
-
link_keys -- A list of pre-defined keys to download links. To download the full checkpoint list, use link_keys=["link1", "link2", "link3", "link4"]. If the user needs only a half of check points, then, the user can use only a half of link_keys. For example, link_keys= ["link1", "link2"]
-
real_data -- If this is True, real images and masks used to train SinGANs will be downloaded into the checkpoint folder.
Return
This function returns a list of paths to all downloaded checkpoints to use with other functions of singan_polyp_aug. If the all checkpoints are used, then the function returns 1000 different sinGAN checkpoint paths which are dirrecting to pre-trained SinGAN checkpoints of the 1000 polyp images introduced in Hyper-kvasir dataset.
Generate synthetic polyps and corresponding mask
generate_data.generate_from_single_checkpoint(out_dir:str,
checkpoint_path:str,
num_samples:int=1,
gen_start_scale:int=5,
mask_post_processing:bool=True) -> None:
''' A function to generate synthetic polyp and correspondign mask from a given checkpoint path.
Parameters
----------
out_dir: str
A path to save output data.
checkpoint_path: str
A path to a downloaded checkpoint. To get paths, you have to run prepare_requirements.prepare_checkpoints() function.
num_samples: int
Number of random samples to generate from the given checkpoint. Default=1.
gen_start_scale: int
Predefined scales used in SinGAN training. You can use values between 0-9. Value 0 generates more random samples and value 9 generate sampels which are
very close to the training image.
mask_post_processing: bool
Whether the generated mask should be post processed or not. If True, generates mask is cleaned to have only 0 and 255.
Returns
------
None
This function does not have a return.
'''
generate_data.generate_from_multiple_checkpoints(out_dir:str, checkpoint_paths:list, *args, **kwargs)-> None:
''' A function to generate synthetic polyp and correspondign mask from a given list of checkpoint paths.
Parameters
----------
out_dir: str
A path to save output data.
checkpoint_paths: list
A path list to downloaded checkpoints. To get paths, you have to run prepare_requirements.prepare_checkpoints() function.
num_samples: int
Number of random samples to generate from the given checkpoint. Default=1.
gen_start_scale: int
Predefined scales used in SinGAN training. You can use values between 0-9. Value 0 generates more random samples and value 9 generate sampels which are
very close to the training image.
mask_post_processing: bool
Whether the generated mask should be post processed or not. If True, generates mask is cleaned to have only 0 and 255.
Returns
------
None
This function does not have a return.
'''
generate_data.generate_simple(out_dir:str, chk_dir:str, *args, **kwargs)-> None:
''' A function to generate synthetic polyp and correspondign mask from all downloaded checkpoint paths.
Parameters
----------
out_dir: str
A path to save output data.
chk_dir: str
The path to checkpoint directory. If the directory does not have downloaded checkpoints, this function will download them.
num_samples: int
Number of random samples to generate from the given checkpoint. Default=1.
gen_start_scale: int
Predefined scales used in SinGAN training. You can use values between 0-9. Value 0 generates more random samples and value 9 generate sampels which are
very close to the training image.
mask_post_processing: bool
Whether the generated mask should be post processed or not. If True, generates mask is cleaned to have only 0 and 255.
Returns
------
None
This function does not have a return.
'''
Transfering style from real to fake
help(style_transfer.transfer_style)
transfer_style(content_img_path: str, style_img_path: str, num_epochs: int, content_weight: int, style_weight: int, device: torch.device, vgg_model: str, verbose=False, tqdm_position=0, tqdm_leave=True, *args, **kwargs) -> 'PIL.Image'
Trnsfering style from a source image to a target image.
Parameters
==========
content_img_path: str
A path to an image to which the style is going to be transfered.
style_img: str
A path to an image which has the required style to be transferred.
num_epochs: int
Number of epoch to iterate for transfering style to content image.
content_weight: int
Weight to keep the content of the destination image.
style_weight: int
Weight to transfer style from the source image.
device: torch.device
Torch device object, either "CPU" or "CUDA". Refer Pytoch documentation for more detials.
vgg_model: str
A model to extract features.
verbose: bool
If true, loss values will be printed to stdout.
Return
=======
PIL.Image
Style transferred image.
Citation:
TBA
References:
@article{cite-key,
da = {2020/08/28},
date-added = {2021-03-27 01:08:18 +0100},
date-modified = {2021-03-27 01:08:18 +0100},
doi = {10.1038/s41597-020-00622-y},
id = {Borgli2020},
isbn = {2052-4463},
journal = {Scientific Data},
number = {1},
pages = {283},
title = {HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy},
ty = {JOUR},
url = {https://doi.org/10.1038/s41597-020-00622-y},
volume = {7},
year = {2020},
Bdsk-Url-1 = {https://doi.org/10.1038/s41597-020-00622-y}}
@inproceedings{shaham2019singan,
title={Singan: Learning a generative model from a single natural image},
author={Shaham, Tamar Rott and Dekel, Tali and Michaeli, Tomer},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={4570--4580},
year={2019}
}
Contacts:
vajira@simula.no or michael@simula.no
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file singan-seg-polyp-1.0.4.tar.gz
.
File metadata
- Download URL: singan-seg-polyp-1.0.4.tar.gz
- Upload date:
- Size: 25.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5bc0ce667dde189c1bdd3f90a3a03f518681d50444af6a3dfcd317ad108a362d |
|
MD5 | 3666735b529a2a01ddcbc44db5fd2806 |
|
BLAKE2b-256 | 52dc759154bec74bb09b3bd298e0e247aa9fb29d0ca389e0144fab68d4ff0565 |
File details
Details for the file singan_seg_polyp-1.0.4-py3-none-any.whl
.
File metadata
- Download URL: singan_seg_polyp-1.0.4-py3-none-any.whl
- Upload date:
- Size: 28.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e0ead159cd526eac9c532ff211ffe1a6a520deae78ab9c013fdcd86cff42f7ac |
|
MD5 | 1bdfbd4798272c3a46bf9f90681ed459 |
|
BLAKE2b-256 | 18d7ad1dc79e4ec74838196b2c61317bd43d58bef8b4030e7acfe8ed74f8dd1f |