Skip to main content

Generating synthetic polyps and corresponding mask using pretrained SinGAN-Seg and Style tranfering functionalities.

Project description

singan-seg-polyp

If you want to train your own SinGAN-Seg models, please follow the repository here: https://github.com/vlbthambawita/singan-seg

Install pip package

pip install singan-seg-polyp

Import required packages

from singan_seg_polyp import generate_data, prepare_requirements

Prepare checkpoints

Help on function prepare_checkpoints in module singan_seg_polyp.prepare_requirements:

prepare_checkpoints(path_to_checkpoints: str, link_keys=['link1', 'link2', 'link3', 'link4'], real_data=True, *args, **kwargs) -> str
'''
    The main function preparing checkpoints for pre-trained SinGANs of Polyp images.
    
    Parameters
    -----------
    path_to_checkpoints: str
        A directory path to download checkpoints. 
    link_keys: list
        A list of link keys: link1, link2, link3, link4. One or multiple link keys can be put in this list. 
    real_data: bool
        If True, the real images and masks used to train SinGANs will be downloaded to the checkpoint directory.  
    
    Return
    ------
    checkpoint_paths_list, real_image_mask_pair_list
        A sorted list of paths to downloaded checkpoints.
        A sorted (image_path, mask_path) tuple list.
'''
out_paths = prepare_requirements.prepare_checkpoints("./singan_polyp_checkpoints", link_keys=["link1", "link2", "link3", "link4"])

Parameters

  • path_to_checkpoints -- A path to save checkpoints. The prepare_checkpoints() function checks the availability of pre-downloaded checkpoints. So, the use can run the save command twice without any downlaod overhead.

  • link_keys -- A list of pre-defined keys to download links. To download the full checkpoint list, use link_keys=["link1", "link2", "link3", "link4"]. If the user needs only a half of check points, then, the user can use only a half of link_keys. For example, link_keys= ["link1", "link2"]

  • real_data -- If this is True, real images and masks used to train SinGANs will be downloaded into the checkpoint folder.

Return

This function returns a list of paths to all downloaded checkpoints to use with other functions of singan_polyp_aug. If the all checkpoints are used, then the function returns 1000 different sinGAN checkpoint paths which are dirrecting to pre-trained SinGAN checkpoints of the 1000 polyp images introduced in Hyper-kvasir dataset.


Generate synthetic polyps and corresponding mask

generate_data.generate_from_single_checkpoint(out_dir:str, 
                                    checkpoint_path:str, 
                                    num_samples:int=1, 
                                    gen_start_scale:int=5,
                                    mask_post_processing:bool=True) -> None:
    ''' A function to generate synthetic polyp and correspondign mask from a given checkpoint path.

    Parameters
    ----------
    out_dir: str
        A path to save output data.
    checkpoint_path: str
        A path to a downloaded checkpoint. To get paths, you have to run prepare_requirements.prepare_checkpoints() function.
    num_samples: int
        Number of random samples to generate from the given checkpoint. Default=1.
    gen_start_scale: int
        Predefined scales used in SinGAN training. You can use values between 0-9. Value 0 generates more random samples and value 9 generate sampels which are 
        very close to the training image.
    mask_post_processing: bool
        Whether the generated mask should be post processed or not. If True, generates mask is cleaned to have only 0 and 255. 
    
    Returns
    ------
    None
        This function does not have a return. 

    '''
generate_data.generate_from_multiple_checkpoints(out_dir:str, checkpoint_paths:list, *args, **kwargs)-> None:
    ''' A function to generate synthetic polyp and correspondign mask from a given list of checkpoint paths.

    Parameters
    ----------
    out_dir: str
        A path to save output data.
    checkpoint_paths: list
        A path list to downloaded checkpoints. To get paths, you have to run prepare_requirements.prepare_checkpoints() function.
    num_samples: int
        Number of random samples to generate from the given checkpoint. Default=1.
    gen_start_scale: int
        Predefined scales used in SinGAN training. You can use values between 0-9. Value 0 generates more random samples and value 9 generate sampels which are 
        very close to the training image.
    mask_post_processing: bool
        Whether the generated mask should be post processed or not. If True, generates mask is cleaned to have only 0 and 255. 
    
    Returns
    ------
    None
        This function does not have a return. 

    '''
generate_data.generate_simple(out_dir:str, chk_dir:str, *args, **kwargs)-> None:
    ''' A function to generate synthetic polyp and correspondign mask from all downloaded checkpoint paths.

    Parameters
    ----------
    out_dir: str
        A path to save output data.
    chk_dir: str
        The path to checkpoint directory. If the directory does not have downloaded checkpoints, this function will download them.
    num_samples: int
        Number of random samples to generate from the given checkpoint. Default=1.
    gen_start_scale: int
        Predefined scales used in SinGAN training. You can use values between 0-9. Value 0 generates more random samples and value 9 generate sampels which are 
        very close to the training image.
    mask_post_processing: bool
        Whether the generated mask should be post processed or not. If True, generates mask is cleaned to have only 0 and 255. 
    
    Returns
    ------
    None
        This function does not have a return. 

    '''

Transfering style from real to fake

help(style_transfer.transfer_style)

transfer_style(content_img_path: str, style_img_path: str, num_epochs: int, content_weight: int, style_weight: int, device: torch.device, vgg_model: str, verbose=False, tqdm_position=0, tqdm_leave=True, *args, **kwargs) -> 'PIL.Image' 
    Trnsfering style from a source image to a target image.
    
    Parameters
    ==========
    
    content_img_path: str
        A path to an image to which the style is going to be transfered.
    style_img: str
        A path to an image which has the required style to be transferred.
    num_epochs: int
        Number of epoch to iterate for transfering style to content image.
    content_weight: int
        Weight to keep the content of the destination image.
    style_weight: int
        Weight to transfer style from the source image.
    device: torch.device
        Torch device object, either "CPU" or "CUDA". Refer Pytoch documentation for more detials.
    vgg_model: str
        A model to extract features.
    verbose: bool
        If true, loss values will be printed to stdout.
    
    
    
    Return
    =======
    PIL.Image
        Style transferred image.

Citation:

@article{thambawita2021singan,
  title={SinGAN-Seg: Synthetic Training Data Generation for Medical Image Segmentation},
  author={Thambawita, Vajira and Salehi, Pegah and Sheshkal, Sajad Amouei and Hicks, Steven A and Hammer, Hugo L and Parasa, Sravanthi and de Lange, Thomas and Halvorsen, P{\aa}l and Riegler, Michael A},
  journal={arXiv preprint arXiv:2107.00471},
  year={2021}
}

References:


@article{cite-key,
	da = {2020/08/28},
	date-added = {2021-03-27 01:08:18 +0100},
	date-modified = {2021-03-27 01:08:18 +0100},
	doi = {10.1038/s41597-020-00622-y},
	id = {Borgli2020},
	isbn = {2052-4463},
	journal = {Scientific Data},
	number = {1},
	pages = {283},
	title = {HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy},
	ty = {JOUR},
	url = {https://doi.org/10.1038/s41597-020-00622-y},
	volume = {7},
	year = {2020},
	Bdsk-Url-1 = {https://doi.org/10.1038/s41597-020-00622-y}}

@inproceedings{shaham2019singan,
  title={Singan: Learning a generative model from a single natural image},
  author={Shaham, Tamar Rott and Dekel, Tali and Michaeli, Tomer},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={4570--4580},
  year={2019}
}

Contacts:

vajira@simula.no or michael@simula.no

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

singan-seg-polyp-1.0.5.tar.gz (40.4 kB view details)

Uploaded Source

Built Distribution

singan_seg_polyp-1.0.5-py3-none-any.whl (58.4 kB view details)

Uploaded Python 3

File details

Details for the file singan-seg-polyp-1.0.5.tar.gz.

File metadata

  • Download URL: singan-seg-polyp-1.0.5.tar.gz
  • Upload date:
  • Size: 40.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.8

File hashes

Hashes for singan-seg-polyp-1.0.5.tar.gz
Algorithm Hash digest
SHA256 5687016cc28de040f16ec9afbb27d7095b31002ee3924d52198e218010a6a1e9
MD5 61da379328765dd749f34721a03a9ae7
BLAKE2b-256 661cd642be89fef53032168f41fdca8b70909bd1e355677a1b002abc31beb354

See more details on using hashes here.

File details

Details for the file singan_seg_polyp-1.0.5-py3-none-any.whl.

File metadata

  • Download URL: singan_seg_polyp-1.0.5-py3-none-any.whl
  • Upload date:
  • Size: 58.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.8

File hashes

Hashes for singan_seg_polyp-1.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 4a29238085511171b79a8f5bd84bec40e0b4385e407275e2ae4e33dbd2a660c8
MD5 04dec902a0c7b8819fd79c13f03bcd5d
BLAKE2b-256 137df134f3a6ab91e75c46eeff9f24c1868bda8afc75b930dad4c5f840927434

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page