OpenAI Gym environment designed for training RL agents to bring CartPole upright and its further balancing.
Project description
This package contains OpenAI Gym environment designed for training RL agents to bring CartPole upright and its further balancing. The environment is automatically registered under id: single-cartpole-custom-v0, so it can be easily used by RL agent training libraries, such as StableBaselines3.
At the https://github.com/marek-robak/Single-cartpole-custom-gym-env-for-reinforcement-learning.git you can find a detailed description of the environment, along with a description of the package installation and sample code made to train and evaluate agents in this environment.
This environment was created for the needs of my bachelor's thesis, available at https://www.ap.uj.edu.pl/diplomas/151837/ site.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file single_cartpole_custom_gym_env-1.2.5.tar.gz
.
File metadata
- Download URL: single_cartpole_custom_gym_env-1.2.5.tar.gz
- Upload date:
- Size: 8.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 47848b7c4e30c73128ee438de90c4922e5152d6b893113adf17e89beff1f438b |
|
MD5 | 52ef742040e3866906c75c79455ab22c |
|
BLAKE2b-256 | a3cb358901ee90f69683643a5dd5a2d0e7c030d13f62f67c7d2845a92be25dfd |
File details
Details for the file single_cartpole_custom_gym_env-1.2.5-py3-none-any.whl
.
File metadata
- Download URL: single_cartpole_custom_gym_env-1.2.5-py3-none-any.whl
- Upload date:
- Size: 8.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0910d5994f7a235aa9b35f15664a9c8227fd1ace86709460221312f873bc9518 |
|
MD5 | 8b0a23cb4f2db67e0306626ee67a5c98 |
|
BLAKE2b-256 | 2a8642f650275e5d8293f03588ca56530efaffe2e6f9b728f393bb96ca99392c |