sklearn2gem converts a Pickle'd scikit-learn model into a rubygem
Project description
# sklearn2gem
[![Build Status](https://travis-ci.org/stewartpark/sklearn2gem.svg?branch=master)](https://travis-ci.org/stewartpark/sklearn2gem) [![Requirements Status](https://requires.io/github/stewartpark/sklearn2gem/requirements.svg?branch=master)](https://requires.io/github/stewartpark/sklearn2gem/requirements/?branch=master) [![PyPI version](https://badge.fury.io/py/sklearn2gem.svg)](https://badge.fury.io/py/sklearn2gem)
⚡ sklearn2gem ports your scikit-learn model into a fast ruby C binding!
# Getting started
Install sklearn2gem using pip:
` pip install sklearn2gem `
or via easy_install:
` easy_install sklearn2gem `
After that, dump your scikit-learn model with sklearn.externals.joblib, and run sklearn2gem model_name@version your_model.pkl foo/bar/model_name. You should be able to see a newly created folder named model_name under foo/bar/.
See [examples/iris.py](https://github.com/stewartpark/sklearn2gem/blob/master/examples/iris.py) to try it out.
To produce a pre-compiled binary gem, use [gem-compiler](https://github.com/luislavena/gem-compiler).
# What machine learning algorithms are supported?
Since sklearn2gem uses nok/sklearn-porter to convert a model into a C file, you can refer to [this page](https://github.com/nok/sklearn-porter#machine-learning-algorithms).
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file sklearn2gem-0.1.1.tar.gz
.
File metadata
- Download URL: sklearn2gem-0.1.1.tar.gz
- Upload date:
- Size: 4.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 09320f31e77a4b10342b164e340308f4c6732756a1b83586cf330dc89a47a425 |
|
MD5 | ed84547091eb2c8cfced03e2a3463fe9 |
|
BLAKE2b-256 | 5fa32189cea4405cbc56d87f2f1b1c6350d6d85a418a1a496ea1fc3bf4bbd715 |