Skip to main content

A Python client for interacting with SlashML servicesDeveloped by SlashML.

Project description

SlashML Python client

SlashML

One API for all your machine learning needs.

Installation guide

pip install slashml

Quickstart

Convert text to audio

from slashml import TextToSpeech

# Replace `API_KEY` with your SlasML API token. This example still runs without
# the API token but usage will be limited
model = TextToSpeech(api_key=None)

input_text = "to be or not to be, that is the question!"

# Submit request
job = model.execute(text=input_text, service_provider=TextToSpeech.ServiceProvider.AWS)

print (f"\n\n\n You can access the audio file here: {job.audio_url}")

Transcribe an audio file

from slashml import SpeechToText

# Replace `API_KEY` with your SlasML API token. This example still runs without
# the API token but usage will be limited
model = SpeechToText(api_key=None)

response = model.execute(
    upload_url='https://slashml.s3.ca-central-1.amazonaws.com/695c711f-9f5d-4ff1-ae4f-4439842eef5f', 
    service_provider=SpeechToText.ServiceProvider.WHISPER
)

print(f"\n\n\n\nTranscription = {response.transcription_data.transcription}")

Summarize a text input

from slashml import TextSummarization

model = TextSummarization(api_key=None)

input_text = """A good writer doesn't just think, and then write down what he thought, as a sort of transcript. A good writer will almost always discover new things in the process of writing. And there is, as far as I know, no substitute for this kind of discovery. Talking about your ideas with other people is a good way to develop them. But even after doing this, you'll find you still discover new things when you sit down to write. There is a kind of thinking that can only be done by writing."""

response = model.execute(text=input_text, service_provider=TextSummarization.ServiceProvider.OPENAI)

print(f"Summary = {response.summarization_data}")

Deploy your own Model

Note: this examples requires the transformers and torch packages to be installed. You can install them with pip install transformers torch

pip install transformers torch
from slashml import ModelDeployment
import time

# you might have to install transfomers and torch
from transformers import pipeline

def train_model():
    # Bring in model from huggingface
    return pipeline('fill-mask', model='bert-base-uncased')

my_model = train_model()

# Replace `API_KEY` with your SlasML API token.
API_KEY = "YOUR_API_KEY"

model = ModelDeployment(api_key=API_KEY)

# deploy model
response = model.deploy(model_name='my_model_3', model=my_model)

# wait for it to be deployed
time.sleep(2)
status = model.status(model_version_id=response.id)

while status.status != 'READY':
    print(f'status: {status.status}')
    print('trying again in 5 seconds')
    time.sleep(5)
    status = model.status(model_version_id=response.id)

    if status.status == 'FAILED':
        raise Exception('Model deployment failed')

# submit prediction
input_text = 'Steve jobs is the [MASK] of Apple.'
prediction = model.predict(model_version_id=response.id, model_input=input_text)
print(prediction)

View the list of service providers available

from slashml import TextToSpeech

print(TextToSpeech.ServiceProvider.choices())

# you can repeat the same thing for all services 
# print(TextSummarization.ServiceProvider.choices())
# print(SpeechToText.ServiceProvider.choices())

Introduction

Overview

This is the Python client (SDK) for SlashML. It allows users to use the endpoints available and active https://docs.slashml.com.

Set up and usage

There is a daily limit (throttling) on the number of calls the user performs. The code can run without specifying the API key. The throttling kicks in and prevents new jobs after exceeding 10 calls per minute.

If the user intends on using the service more frequently, it is recommended to generate an token or API key from https://www.slashml.com/settings/api-key. You can pass the API key when creating a model, if you don't the api will still work but you will be throttled.

from slashml import TextToSpeech

# Initialize model
text_to_speech = TextToSpeech(api_key="YOUR_API_KEY")

# summarizer = TextSummarization(api_key="YOUR_API_KEY")
# speech_to_text = SpeechToText(api_key="YOUR_API_KEY")

If the user preferes using the API calls directly, the documentation is available here.

Available service providers

Speech-to-text

For transcription, SlashML supports the following service providers:

Summarization

For text summarization, SlashML supports the following service providers:

Text-to-Speech

For speechification, SlashML supports the following service providers:

Documentation

For production ready use cases, look at the examples folder

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

slashml-0.1.6.tar.gz (11.8 kB view details)

Uploaded Source

Built Distribution

slashml-0.1.6-py3-none-any.whl (9.3 kB view details)

Uploaded Python 3

File details

Details for the file slashml-0.1.6.tar.gz.

File metadata

  • Download URL: slashml-0.1.6.tar.gz
  • Upload date:
  • Size: 11.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.3

File hashes

Hashes for slashml-0.1.6.tar.gz
Algorithm Hash digest
SHA256 4843106bede37c88c74e5b67d6d9d7970a3ef494500599ed92ba015a4d0ed194
MD5 8f72a30fe24cb26fee1f2e3f03435188
BLAKE2b-256 704433fcec1ce794bc103626d7e50cbc4f94a8aa4ff6de337a8c2e0a1e975e02

See more details on using hashes here.

File details

Details for the file slashml-0.1.6-py3-none-any.whl.

File metadata

  • Download URL: slashml-0.1.6-py3-none-any.whl
  • Upload date:
  • Size: 9.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.3

File hashes

Hashes for slashml-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 5531a657fdb10842e6de9ab6d8b595a5e1f32f758174582f0a40b886d4ee786d
MD5 a9e7b06b13537b7ced8e2f1533b4ea15
BLAKE2b-256 6d5489b02885dc458316b3c0f983d70475e3eebf1cc5bef33d2790333fd83159

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page