Sleep EEG preprocessing, analysis and visualization
Project description
sleepeegpy
sleepeegpy is a high-level package built on top of mne-python, yasa for preprocessing, analysis and visualisation of sleep EEG data.
Installation
- Make sure you have Python version installed. Requires Python 3.10 or higher.
- Create a Python virtual environment, for more info you can refer to python venv, virtualenv or conda.
- Activate the environment
-
pip install sleepeegpy
- Download notebooks.
Quickstart
- Open the complete pipeline notebook in the created environment.
- Follow the notebook's instructions.
RAM requirements
For overnight, high density (256 channels) EEG recordings downsampled to 250 Hz expect at least 64 GB RAM expenditure for cleaning, spectral analyses and event detection.
Retrieve example dataset
odie = pooch.create(
path=pooch.os_cache("sleepeegpy_dataset"),
base_url="doi:10.5281/zenodo.10362189",
)
odie.load_registry_from_doi()
bad_channels = odie.fetch("bad_channels.txt")
annotations = odie.fetch("annotations.txt")
path_to_eeg = odie.fetch("resampled_raw.fif")
for i in range(1,4):
odie.fetch(f"resample_raw-{i}.fif")
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
sleepeegpy-0.5.1.tar.gz
(26.1 kB
view hashes)
Built Distribution
sleepeegpy-0.5.1-py3-none-any.whl
(26.9 kB
view hashes)
Close
Hashes for sleepeegpy-0.5.1-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7d6deb4307f4771fe4f1de7de557f754350dc19e329d2faad72c325021464b8a |
|
MD5 | 4cd6afa57d0fc7d231e215417dad5038 |
|
BLAKE2b-256 | 5c367711e928f7bea462e24aeaa9df087134230c96abd26cd3661ebc15c6cba3 |