Skip to main content

RedisAI clients for SmartSim

Project description



Home    Install    Documentation    Slack    Cray Labs   


License GitHub last commit GitHub tag (latest by date) Language Code style: black


SmartRedis

SmartRedis is a collection of Redis clients that support RedisAI capabilities and include additional features for high performance computing (HPC) applications. SmartRedis provides clients in the following languages:

Language Version/Standard
Python 3.7+
C++ C++17
C C99
Fortran Fortran 2018

SmartRedis is used in the SmartSim library. SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow in numerical simulations at scale. SmartRedis connects these simulations to a Redis database or Redis database cluster for data storage, script execution, and model evaluation. While SmartRedis contains features for simulation workflows on supercomputers, SmartRedis is fully functional as a RedisAI client library and can be used without SmartSim in any Python, C++, C, or Fortran project.

Using SmartRedis

SmartRedis installation instructions are currently hosted as part of the SmartSim library installation instructions Additionally, detailed API documents are also available as part of the SmartSim documentation.

Dependencies

SmartRedis utilizes the following libraries.

Publications

The following are public presentations or publications using SmartRedis

Cite

Please use the following citation when referencing SmartSim, SmartRedis, or any SmartSim related work.

Partee et al., “Using Machine Learning at Scale in HPC Simulations with SmartSim: An Application to Ocean Climate Modeling,” arXiv:2104.09355, Apr. 2021, [Online]. Available: http://arxiv.org/abs/2104.09355.

bibtex

```latex
@misc{partee2021using,
      title={Using Machine Learning at Scale in HPC Simulations with SmartSim: An Application to Ocean Climate Modeling},
      author={Sam Partee and Matthew Ellis and Alessandro Rigazzi and Scott Bachman and Gustavo Marques and Andrew Shao and Benjamin Robbins},
      year={2021},
      eprint={2104.09355},
      archivePrefix={arXiv},
      primaryClass={cs.CE}
}
```

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

smartredis-0.1.1.tar.gz (132.0 kB view details)

Uploaded Source

Built Distributions

smartredis-0.1.1-cp39-cp39-manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

smartredis-0.1.1-cp39-cp39-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

smartredis-0.1.1-cp38-cp38-manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

smartredis-0.1.1-cp38-cp38-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

smartredis-0.1.1-cp37-cp37m-manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

smartredis-0.1.1-cp37-cp37m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file smartredis-0.1.1.tar.gz.

File metadata

  • Download URL: smartredis-0.1.1.tar.gz
  • Upload date:
  • Size: 132.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for smartredis-0.1.1.tar.gz
Algorithm Hash digest
SHA256 121e315964268469c127da8645e0ae7e79e9d3fc84881556bc1698bb6d77a509
MD5 63620deb8a77f527c7712f8a1a9d9447
BLAKE2b-256 4e099621a91c40282dbe1de3c503b0980d1736b28bcc27fa59dc4053f0b8529b

See more details on using hashes here.

File details

Details for the file smartredis-0.1.1-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: smartredis-0.1.1-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for smartredis-0.1.1-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 10c7d94971d06407b068b983dc3592c231fa955dbacd1c4aed3fc25e4f1a05e0
MD5 8b25a810c399b91bdf9fb931d6adc743
BLAKE2b-256 34bf05374139d67920f1b4a33aa7fca1f27aa47f497520dc2bf81fc91228bd40

See more details on using hashes here.

File details

Details for the file smartredis-0.1.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: smartredis-0.1.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for smartredis-0.1.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c405f89596e882b692aa05f72e9893e84e6ceea8fde02273c976b2b204bc11ba
MD5 ade3b8feb7207b50d88eac1df36265c0
BLAKE2b-256 5e774b0fa1de3c6f90eaad8182174fa8abbb9f9e6ea34915803f77a00340912b

See more details on using hashes here.

File details

Details for the file smartredis-0.1.1-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: smartredis-0.1.1-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for smartredis-0.1.1-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 26771670649ce8954ccf8b76573fb035ce9052b4832e5e5a33f3009abb4b35de
MD5 3fa424a693da6a467556b8d4323660e6
BLAKE2b-256 27f545ccb184f6ee6ce40d6e7abd5c9a7572779c3670e034d2325aadbd0ca072

See more details on using hashes here.

File details

Details for the file smartredis-0.1.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: smartredis-0.1.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for smartredis-0.1.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7f1c1b5128b789efb5cee2ff8438afc60a402c6020d3eabd0524be4241d24340
MD5 3eef60213be9aa8acb9e969bb50e8dc5
BLAKE2b-256 690e39459d1746fe34f3695ed4f3bdd8935cd8fe59cc58ed49d3c1f2a5aa1ccb

See more details on using hashes here.

File details

Details for the file smartredis-0.1.1-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: smartredis-0.1.1-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for smartredis-0.1.1-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5a6c5fa2cf5079e6c966c669031f5e1f156618e416f1e1a347316e054f5a5c81
MD5 8cff52038a61304dba4f653a4aa29e54
BLAKE2b-256 9450908e2aea96d3a9ca2b4e4a26f5e77fa0535a34e07989e57f07d83e092009

See more details on using hashes here.

File details

Details for the file smartredis-0.1.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: smartredis-0.1.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for smartredis-0.1.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dcdfc451a046ed68dc99357885d0fd4176e2bd2fa4939274e43452c8189a3504
MD5 a29f38620b4d3a08ad088b94e0148209
BLAKE2b-256 435c298ec8328471904a94ca8e33d82aa7f1348e6edde470a6d2577f637ac6ad

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page