Skip to main content

RedisAI clients for SmartSim

Project description



Home    Install    Documentation    Slack    Cray Labs   


License GitHub last commit PyPI - Wheel GitHub tag (latest by date) PyPI - Python Version Language Code style: black


SmartRedis

SmartRedis is a collection of Redis clients that support RedisAI capabilities and include additional features for high performance computing (HPC) applications. SmartRedis provides clients in the following languages:

Language Version/Standard
Python 3.7, 3.8, 3.9
C++ C++17
C C99
Fortran Fortran 2018

SmartRedis is used in the SmartSim library. SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow in numerical simulations at scale. SmartRedis connects these simulations to a Redis database or Redis database cluster for data storage, script execution, and model evaluation. While SmartRedis contains features for simulation workflows on supercomputers, SmartRedis is fully functional as a RedisAI client library and can be used without SmartSim in any Python, C++, C, or Fortran project.

Using SmartRedis

SmartRedis installation instructions are currently hosted as part of the SmartSim library installation instructions Additionally, detailed API documents are also available as part of the SmartSim documentation.

Dependencies

SmartRedis utilizes the following libraries.

Publications

The following are public presentations or publications using SmartRedis

Cite

Please use the following citation when referencing SmartSim, SmartRedis, or any SmartSim related work.

Partee et al., “Using Machine Learning at Scale in HPC Simulations with SmartSim: An Application to Ocean Climate Modeling,” arXiv:2104.09355, Apr. 2021, [Online]. Available: http://arxiv.org/abs/2104.09355.

bibtex

```latex
@misc{partee2021using,
      title={Using Machine Learning at Scale in HPC Simulations with SmartSim: An Application to Ocean Climate Modeling},
      author={Sam Partee and Matthew Ellis and Alessandro Rigazzi and Scott Bachman and Gustavo Marques and Andrew Shao and Benjamin Robbins},
      year={2021},
      eprint={2104.09355},
      archivePrefix={arXiv},
      primaryClass={cs.CE}
}
```

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

smartredis-0.2.0.tar.gz (127.5 kB view details)

Uploaded Source

Built Distributions

smartredis-0.2.0-cp39-cp39-manylinux2010_x86_64.whl (393.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

smartredis-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl (362.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

smartredis-0.2.0-cp38-cp38-manylinux2010_x86_64.whl (393.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

smartredis-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl (362.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

smartredis-0.2.0-cp37-cp37m-manylinux2010_x86_64.whl (393.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

smartredis-0.2.0-cp37-cp37m-macosx_10_9_x86_64.whl (361.1 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file smartredis-0.2.0.tar.gz.

File metadata

  • Download URL: smartredis-0.2.0.tar.gz
  • Upload date:
  • Size: 127.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for smartredis-0.2.0.tar.gz
Algorithm Hash digest
SHA256 8b42de5cbd2d8989ae2ff58048c9aa5731fb6dc4c6bb4252a1290e4fd773f019
MD5 9aca17e2664d6fdeadf80b382c1977f8
BLAKE2b-256 77544533fbfe7012c9d0de83d7055cd017ee9de82840e1017676461e852065c0

See more details on using hashes here.

File details

Details for the file smartredis-0.2.0-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: smartredis-0.2.0-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 393.9 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for smartredis-0.2.0-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7643a9c5f2d9e41acb23e18bbf0f8bccf25896788a66f41cbc3b682baec9a34a
MD5 cc5816373bb6c3d6886965e3b602ed62
BLAKE2b-256 7c275ca26b3f0c12e19385a4d54555a799df2c84c3a3595c1c7b4dede12e1ba2

See more details on using hashes here.

File details

Details for the file smartredis-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: smartredis-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 362.3 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for smartredis-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 139354200a265ec640768df0715c8d5cc46dbbd7d8bdc484220866c1b7d2c5fd
MD5 57067077ec81b198ced04de6266d419a
BLAKE2b-256 7a9a591adac98c18b2d7909568a2e7a20423a951376d77e6c5a668c91ec60169

See more details on using hashes here.

File details

Details for the file smartredis-0.2.0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: smartredis-0.2.0-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 393.6 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for smartredis-0.2.0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 51c70f67e1e35b2c6632c78e8264c3b5b2df51e148a70661d7dd24c1fd82da9a
MD5 4347f00febeba8ab036887a6897a73e4
BLAKE2b-256 d402bb0706965b859f31379ed12594c23d42e40a554f8fe606166d8f743e7be5

See more details on using hashes here.

File details

Details for the file smartredis-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: smartredis-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 362.3 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for smartredis-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8244acdad8dfd629e2db2aee1cebdc468570f8c6cc7d0f8c62262e1a1faf49c0
MD5 02e11062a64784ce493ec16c26678eae
BLAKE2b-256 2952b8a44326583694a2cafc42589d788b796ee880c03592d490ab73ad8025a7

See more details on using hashes here.

File details

Details for the file smartredis-0.2.0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: smartredis-0.2.0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 393.8 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for smartredis-0.2.0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 38e0f3b73b11962b80383be9677e2a302a9752f2849fa6b5a9c575f6878b5154
MD5 18fe964b8b57c100616b03bb1c2e9566
BLAKE2b-256 d186a70c3c1335d36a3e32c4a57f57639d0c708380bf26d4c5e09bbb6104ff40

See more details on using hashes here.

File details

Details for the file smartredis-0.2.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: smartredis-0.2.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 361.1 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for smartredis-0.2.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e36932ca73e7b9ad9c9970bb7f4240591a2219f98a551eb16c4f4e378968f881
MD5 2b21e06738700539844fc0dc4d957dfb
BLAKE2b-256 755f1e43149c07c01913e16493283929937bb70992fad05bbafc4fa7b624973c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page