Skip to main content

RedisAI clients for SmartSim

Project description



Home    Install    Documentation    Slack    Cray Labs   


License GitHub last commit PyPI - Wheel GitHub tag (latest by date) PyPI - Python Version Language Code style: black codecov

SmartRedis

SmartRedis is a collection of Redis clients that support RedisAI capabilities and include additional features for high performance computing (HPC) applications. SmartRedis provides clients in the following languages:

Language Version/Standard
Python 3.7, 3.8, 3.9, 3.10
C++ C++17
C C99
Fortran Fortran 2018 (GNU/Intel), 2003 (PGI/Nvidia)

SmartRedis is used in the SmartSim library. SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow in numerical simulations at scale. SmartRedis connects these simulations to a Redis database or Redis database cluster for data storage, script execution, and model evaluation. While SmartRedis contains features for simulation workflows on supercomputers, SmartRedis is fully functional as a RedisAI client library and can be used without SmartSim in any Python, C++, C, or Fortran project.

Using SmartRedis

SmartRedis installation instructions are currently hosted as part of the SmartSim library installation instructions Additionally, detailed API documents are also available as part of the SmartSim documentation.

Dependencies

SmartRedis utilizes the following libraries:

Publications

The following are public presentations or publications using SmartRedis

Cite

Please use the following citation when referencing SmartSim, SmartRedis, or any SmartSim related work:

Partee et al., "Using Machine Learning at scale in numerical simulations with SmartSim:
An application to ocean climate modeling",
Journal of Computational Science, Volume 62, 2022, 101707, ISSN 1877-7503.
Open Access: https://doi.org/10.1016/j.jocs.2022.101707.

bibtex

@article{PARTEE2022101707,
    title = {Using Machine Learning at scale in numerical simulations with SmartSim:
    An application to ocean climate modeling},
    journal = {Journal of Computational Science},
    volume = {62},
    pages = {101707},
    year = {2022},
    issn = {1877-7503},
    doi = {https://doi.org/10.1016/j.jocs.2022.101707},
    url = {https://www.sciencedirect.com/science/article/pii/S1877750322001065},
    author = {Sam Partee and Matthew Ellis and Alessandro Rigazzi and Andrew E. Shao
    and Scott Bachman and Gustavo Marques and Benjamin Robbins},
    keywords = {Deep learning, Numerical simulation, Climate modeling, High performance computing, SmartSim},
    }

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

smartredis-0.4.1.tar.gz (237.4 kB view details)

Uploaded Source

Built Distributions

smartredis-0.4.1-cp39-cp39-manylinux2010_x86_64.whl (672.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

smartredis-0.4.1-cp39-cp39-macosx_10_9_x86_64.whl (644.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

smartredis-0.4.1-cp38-cp38-manylinux2010_x86_64.whl (672.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

smartredis-0.4.1-cp38-cp38-macosx_10_9_x86_64.whl (644.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

smartredis-0.4.1-cp37-cp37m-manylinux2010_x86_64.whl (676.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

smartredis-0.4.1-cp37-cp37m-macosx_10_9_x86_64.whl (641.0 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file smartredis-0.4.1.tar.gz.

File metadata

  • Download URL: smartredis-0.4.1.tar.gz
  • Upload date:
  • Size: 237.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for smartredis-0.4.1.tar.gz
Algorithm Hash digest
SHA256 fff16ed1eb09648ac3c3f845373beb37f3ffe7414d8745ae36af9daf585f8c5b
MD5 6d07ba0bd417c18a11eae894d0977b80
BLAKE2b-256 b4d8e76272891b2ad97a925be78625d2532ec04b174bdd278a490a61f834ded4

See more details on using hashes here.

File details

Details for the file smartredis-0.4.1-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.4.1-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 af4b041c7f2780924d6c3894745a6a62b8eda49b272eca5cc4dbe5751726910b
MD5 087e17ae5f7f447f6038dfa75eccf848
BLAKE2b-256 61d5393fa91aad6a0f4a5084a28f6cfe7931c62dc06caaee85e1257388619ff2

See more details on using hashes here.

File details

Details for the file smartredis-0.4.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.4.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 20c1ed496abd3a02da50125cad15803ee91a50b971d25c802cb355cb3a700d77
MD5 3ae49781feb88e7f831b83f117a924b8
BLAKE2b-256 4d58f86229664ec4f42c8a45e650fe0663279dc45c42aa07b1e17ca082c481b1

See more details on using hashes here.

File details

Details for the file smartredis-0.4.1-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.4.1-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 af30aca577a5600e630c5f20cff77eec8725f5483d5707b73a0ddc668045b0b6
MD5 f30513b29a908cfe33341503942caaea
BLAKE2b-256 ecc0851ff2f02b9761e7420245734dcd6f66e5a9f40f485519e23663634251bc

See more details on using hashes here.

File details

Details for the file smartredis-0.4.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.4.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ab61ac6401970e17ec4d0ae49c4b60c1d5b67224062d60b3bebdd2abcbb6831a
MD5 def964ec09cc5cd803c9de40b032691a
BLAKE2b-256 a874e1370623b12b7d57c1c4c9383fe521b8c9a9c7961da59ff092fed327a28a

See more details on using hashes here.

File details

Details for the file smartredis-0.4.1-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.4.1-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1d434d717d13e56a648ae32327d7917d83a0a4eb6ab82f557fab063fc513b52f
MD5 79c70259c160eb4770ebb079fdc81e0e
BLAKE2b-256 8a102b8da34b888c9ed276df4ab1d3da8bbbdd255d5034489385f7e8d87f2947

See more details on using hashes here.

File details

Details for the file smartredis-0.4.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.4.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4cade366563c4d70f27812ab0f1026d25ff73a8abae06cc9ebae013bf885d330
MD5 079e3fad200b69f0de24e6cdebb577e2
BLAKE2b-256 37c7caa9018803c6d338042655f9729e028d5fda7c1fbe89b68aee15518d0d07

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page