Skip to main content

RedisAI clients for SmartSim

Project description



Home    Install    Documentation    Slack    Cray Labs   


License GitHub last commit PyPI - Wheel GitHub tag (latest by date) PyPI - Python Version Language Code style: black codecov

SmartRedis

SmartRedis is a collection of Redis clients that support RedisAI capabilities and include additional features for high performance computing (HPC) applications. SmartRedis provides clients in the following languages:

Language Version/Standard
Python 3.7, 3.8, 3.9, 3.10
C++ C++17
C C99
Fortran Fortran 2018 (GNU/Intel), 2003 (PGI/Nvidia)

SmartRedis is used in the SmartSim library. SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow in numerical simulations at scale. SmartRedis connects these simulations to a Redis database or Redis database cluster for data storage, script execution, and model evaluation. While SmartRedis contains features for simulation workflows on supercomputers, SmartRedis is fully functional as a RedisAI client library and can be used without SmartSim in any Python, C++, C, or Fortran project.

Using SmartRedis

SmartRedis installation instructions are currently hosted as part of the SmartSim library installation instructions Additionally, detailed API documents are also available as part of the SmartSim documentation.

Dependencies

SmartRedis utilizes the following libraries:

Publications

The following are public presentations or publications using SmartRedis

Cite

Please use the following citation when referencing SmartSim, SmartRedis, or any SmartSim related work:

Partee et al., "Using Machine Learning at scale in numerical simulations with SmartSim:
An application to ocean climate modeling",
Journal of Computational Science, Volume 62, 2022, 101707, ISSN 1877-7503.
Open Access: https://doi.org/10.1016/j.jocs.2022.101707.

bibtex

@article{PARTEE2022101707,
    title = {Using Machine Learning at scale in numerical simulations with SmartSim:
    An application to ocean climate modeling},
    journal = {Journal of Computational Science},
    volume = {62},
    pages = {101707},
    year = {2022},
    issn = {1877-7503},
    doi = {https://doi.org/10.1016/j.jocs.2022.101707},
    url = {https://www.sciencedirect.com/science/article/pii/S1877750322001065},
    author = {Sam Partee and Matthew Ellis and Alessandro Rigazzi and Andrew E. Shao
    and Scott Bachman and Gustavo Marques and Benjamin Robbins},
    keywords = {Deep learning, Numerical simulation, Climate modeling, High performance computing, SmartSim},
    }

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

smartredis-0.4.2.tar.gz (207.9 kB view details)

Uploaded Source

Built Distributions

smartredis-0.4.2-cp310-cp310-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

smartredis-0.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (723.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

smartredis-0.4.2-cp310-cp310-macosx_10_9_x86_64.whl (655.7 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

smartredis-0.4.2-cp39-cp39-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

smartredis-0.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (724.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

smartredis-0.4.2-cp39-cp39-macosx_10_9_x86_64.whl (655.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

smartredis-0.4.2-cp38-cp38-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

smartredis-0.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (724.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

smartredis-0.4.2-cp38-cp38-macosx_10_9_x86_64.whl (655.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

smartredis-0.4.2-cp37-cp37m-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

smartredis-0.4.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (729.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

smartredis-0.4.2-cp37-cp37m-macosx_10_9_x86_64.whl (651.2 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file smartredis-0.4.2.tar.gz.

File metadata

  • Download URL: smartredis-0.4.2.tar.gz
  • Upload date:
  • Size: 207.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for smartredis-0.4.2.tar.gz
Algorithm Hash digest
SHA256 332e734d41558c2115be615ee327b4df1f6ecf01b114000771868b9f618c72f4
MD5 cdf5359d921ace891ac506eb83ae68ea
BLAKE2b-256 fe932e8c0d1dacdd7f497e61523cfccdacdce5fb8b677ccfe1b003219febe056

See more details on using hashes here.

File details

Details for the file smartredis-0.4.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.4.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 81158a473db852fb9a88cb82d4c923758e776dc5c2a961e546eb4345df9510f1
MD5 f64d55053a53fbcb88e5ac17baa9737b
BLAKE2b-256 706cee07d0b5bf67fa3c02600ea34b9c549029f0d19311adae5f6a375cc352e7

See more details on using hashes here.

File details

Details for the file smartredis-0.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a5b4d09812ab5855bd98de1a6bde595b1dfd560d226a62e6ec9f1ff09bf1ef5c
MD5 d2d529bce4dfafec5795453468030b69
BLAKE2b-256 61e9549671a9a9c628c1515f0119799e353d25e65f26a0b2b8ac0575f7d2186d

See more details on using hashes here.

File details

Details for the file smartredis-0.4.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.4.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6be222ac53b5ac2976ad1f2b840315bf7287a09681d68c483e3d3beb99d973d3
MD5 6c253a71706918fec10f80ef621e34fe
BLAKE2b-256 3f81fd367750273acf0a7f539a12df1e0a7c613882d1e589bec75c693272818b

See more details on using hashes here.

File details

Details for the file smartredis-0.4.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.4.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b35834e8e5d10c32efd3260cfab43f04c697520b551220116454f2efdfc8b7c0
MD5 f84f862e0a5a60724c80ad9932ebe85f
BLAKE2b-256 9e0556ce973ef478100cfde59783d704558776b1fb75b1a1a09d1955774c494f

See more details on using hashes here.

File details

Details for the file smartredis-0.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e1df1135de762d280605c2afc9c3264efb3f2751b1c4762d7356c8a305ac470d
MD5 783c0c7c5f6187ed496ec33a4bf8c162
BLAKE2b-256 79336631a83c0fa64c3d2dbdcc5203bb7932abfb73317dc6ff6b9b902eb9f1a5

See more details on using hashes here.

File details

Details for the file smartredis-0.4.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.4.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 964f3a373278af88f9c7e24a896de81bf40f0baaf347f053273c87b6872478ec
MD5 c921907da53c906e9e4dfc36ffa910a1
BLAKE2b-256 2997a5ce398c1dc498d6618500ba9ce51c2f2b7b89e20bd4d3260845a11e3cb0

See more details on using hashes here.

File details

Details for the file smartredis-0.4.2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.4.2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 33079f8f72cef74b8ebb3ce9a4357893945841f7c67d94b9f5c9ccbda10f68da
MD5 f00df55ec0248ffb93971f71cfacbdd1
BLAKE2b-256 0ffa44e026a6718ffdce2fc5069657bd895e7f69decd28898d7442c9a0825f64

See more details on using hashes here.

File details

Details for the file smartredis-0.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d1b7a869810bd9b42a347325b036f1f783b4c11bdb999e614a951b36aa4ad90f
MD5 de9ef83e763712494fc11dc0a6ca6b87
BLAKE2b-256 33bd4fe91955843e7772d793014ac341d0a7588fb71b025ba4043ca268ede6d5

See more details on using hashes here.

File details

Details for the file smartredis-0.4.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.4.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bbe0bbed589aee00c9fe6d2012d0bfdc35719a566f777ccc7a537d27f961e51b
MD5 7da4aacc6b70e24bb6856d8606011e1b
BLAKE2b-256 c903b5e432bb5b9a971adb3ec2ed35860a2f158e32f7cb637a91023e12479aad

See more details on using hashes here.

File details

Details for the file smartredis-0.4.2-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.4.2-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a7b860195a19a21433e346e774c3266d938b633d6ff9485ec7c009fdc63505f1
MD5 3756953cb5e3b6e7ebcf0ea2d2b43058
BLAKE2b-256 1e468746df8df978ed1ff052dd5289716ea37872472ea18cb1be80560de13154

See more details on using hashes here.

File details

Details for the file smartredis-0.4.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.4.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 216f7b0dce8039966a7aa8c007a9566e93f55cc3cf57c1e14377a62044fb0cd9
MD5 2d134820c12fd5381b6787e8780b0771
BLAKE2b-256 6b61b7221bceec664f9d4d4055a8d19ba942c03422816df8a68e7e15fd903ccc

See more details on using hashes here.

File details

Details for the file smartredis-0.4.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.4.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 70146c23aced8acd6f8fac304afff92b5f9b3590080436e89135f8dbe7f67b91
MD5 1ce37fb64e968e02db6629befafe5950
BLAKE2b-256 ca0d4c906be912a2d8ba60c65d54ffa9af395f26046a47ec8af56e600d1b11a5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page