Skip to main content

RedisAI clients for SmartSim

Project description



Home    Install    Documentation    Slack    Cray Labs   


License GitHub last commit PyPI - Wheel GitHub tag (latest by date) PyPI - Python Version Language Code style: black codecov

SmartRedis

SmartRedis is a collection of Redis clients that support RedisAI capabilities and include additional features for high performance computing (HPC) applications. SmartRedis provides clients in the following languages:

Language Version/Standard
Python 3.7, 3.8, 3.9, 3.10
C++ C++17
C C99
Fortran Fortran 2018 (GNU/Intel), 2003 (PGI/Nvidia)

SmartRedis is used in the SmartSim library. SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow in numerical simulations at scale. SmartRedis connects these simulations to a Redis database or Redis database cluster for data storage, script execution, and model evaluation. While SmartRedis contains features for simulation workflows on supercomputers, SmartRedis is fully functional as a RedisAI client library and can be used without SmartSim in any Python, C++, C, or Fortran project.

Using SmartRedis

SmartRedis installation instructions are currently hosted as part of the SmartSim library installation instructions Additionally, detailed API documents are also available as part of the SmartSim documentation.

Dependencies

SmartRedis utilizes the following libraries:

Publications

The following are public presentations or publications using SmartRedis

Cite

Please use the following citation when referencing SmartSim, SmartRedis, or any SmartSim related work:

Partee et al., "Using Machine Learning at scale in numerical simulations with SmartSim:
An application to ocean climate modeling",
Journal of Computational Science, Volume 62, 2022, 101707, ISSN 1877-7503.
Open Access: https://doi.org/10.1016/j.jocs.2022.101707.

bibtex

@article{PARTEE2022101707,
    title = {Using Machine Learning at scale in numerical simulations with SmartSim:
    An application to ocean climate modeling},
    journal = {Journal of Computational Science},
    volume = {62},
    pages = {101707},
    year = {2022},
    issn = {1877-7503},
    doi = {https://doi.org/10.1016/j.jocs.2022.101707},
    url = {https://www.sciencedirect.com/science/article/pii/S1877750322001065},
    author = {Sam Partee and Matthew Ellis and Alessandro Rigazzi and Andrew E. Shao
    and Scott Bachman and Gustavo Marques and Benjamin Robbins},
    keywords = {Deep learning, Numerical simulation, Climate modeling, High performance computing, SmartSim},
    }

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

smartredis-0.5.0.tar.gz (215.6 kB view details)

Uploaded Source

Built Distributions

smartredis-0.5.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

smartredis-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (730.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

smartredis-0.5.0-cp310-cp310-macosx_10_9_x86_64.whl (664.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

smartredis-0.5.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

smartredis-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (731.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

smartredis-0.5.0-cp39-cp39-macosx_10_9_x86_64.whl (664.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

smartredis-0.5.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

smartredis-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (731.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

smartredis-0.5.0-cp38-cp38-macosx_10_9_x86_64.whl (664.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

smartredis-0.5.0-cp37-cp37m-musllinux_1_1_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

smartredis-0.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (738.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

smartredis-0.5.0-cp37-cp37m-macosx_10_9_x86_64.whl (661.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file smartredis-0.5.0.tar.gz.

File metadata

  • Download URL: smartredis-0.5.0.tar.gz
  • Upload date:
  • Size: 215.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for smartredis-0.5.0.tar.gz
Algorithm Hash digest
SHA256 ba09fd7e4f43ed1cdc6675a73ee264d55eb5fe7e4c772a23412c657e076176e3
MD5 faba335ce121189f795ec57096b3006e
BLAKE2b-256 286483ef55f235d6be7104eb714ddfd0c1330dc56ef21e92599085cd041f188b

See more details on using hashes here.

File details

Details for the file smartredis-0.5.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b43ebda644801cfec8f960d5c7260056428f666178b30c42c55ddfc0c58c8b7b
MD5 665ef1a959b5cfb64f44bc0e14d30992
BLAKE2b-256 ec8804ffaa2e56df8b48c9274957e19322a143c611ec4a7ac0990ebd63d427a9

See more details on using hashes here.

File details

Details for the file smartredis-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 66b1455f0bb3f70bdb745e3ead46aed371ebeecaa7b80c1116779386073d3ce2
MD5 a59ea0254f59415436b1e5d6eb58e146
BLAKE2b-256 4ede59dbe6eeab830c6f710c24dc65840e474516b2f7b53085bc7581b28f194f

See more details on using hashes here.

File details

Details for the file smartredis-0.5.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 85e4d4ca35444fc1fba2fcfdd634e966fcf2b2da2a4d8d98c1b7b2452bf7cce9
MD5 c7f536a8f052b8e9b8e3f344d091dfca
BLAKE2b-256 9591df58e0232bfa1700e6300f6ba845019387238c460e977f5f8892dddd45d8

See more details on using hashes here.

File details

Details for the file smartredis-0.5.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9a7ce29b7ad1dd6320cb02492c15649fd0a7bccf9dc75ca35f16b5ecf160c025
MD5 1bbc0e3edd348f29840b3ff282afd1ba
BLAKE2b-256 7f72b82433977a5d50d2ce3dd523e90d7dfde1465272c6b7ecba1f423ad6f884

See more details on using hashes here.

File details

Details for the file smartredis-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0477b4ef2e8f74d6cf29654f98cbcd8fe62d116b4591b5a21d4bb2ca7afe2907
MD5 5029ea62edd54576b1628b06b442c452
BLAKE2b-256 0ee773d2103f4068c9855332cb2098b91432cc0fce936bd92cc4bf8707828c98

See more details on using hashes here.

File details

Details for the file smartredis-0.5.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f3d49013fe36d88faa8c1ec6fc2ac750145769dc29d6a000f5f76c008333ba6b
MD5 43dc11b65fd013a93f6715641db88cb9
BLAKE2b-256 6192e778ab8e04114758a2e8941db5d8f3a7ab73d4fb1a0640ed00c67f7b8e41

See more details on using hashes here.

File details

Details for the file smartredis-0.5.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 133324b2701823410c56d91e11d1dae3fdc632961b803ed39b2c751b993b99b2
MD5 f6a97db3ffe837ff70603f49bd7e4005
BLAKE2b-256 3a998ffbe5c391fccd407b267b08dd52f370e2cd954cace76ceb1dddfc178c7b

See more details on using hashes here.

File details

Details for the file smartredis-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8f47a3c19cbcedb2e53a4d0eb6ff92069458f49357546e04d2d908ddb8991d8c
MD5 a5215854b6d3e50f87073c94d6cbe2e4
BLAKE2b-256 6a8ee32c95cd2e52e8d05c36b4c70a2352609455f757af2d01d0e98618bd8dea

See more details on using hashes here.

File details

Details for the file smartredis-0.5.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 686496624312e8bb73348e74c55b80fdb9d8e084659382d1c39ba5926455d140
MD5 634a047932701160c7f885ec242e0278
BLAKE2b-256 bf3bbb9c492d9cd2b9963fadf5d9c833d2ceb1f2857189b442b910ebba76f0d0

See more details on using hashes here.

File details

Details for the file smartredis-0.5.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e1898a0c2a309d30d2ae692b6df8c6c13ac2128ca1579af51fa501723f276f50
MD5 e519281317cc1de1a3f05c74ea6e2753
BLAKE2b-256 5bb06468efdca1a7f82f2d089e6a40b7ff07bc1f7494dd80060bdf3f19f2570a

See more details on using hashes here.

File details

Details for the file smartredis-0.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3647b3fe87c974267b5bae8645def934c684301c5dd02bef13c6ed80d9ce5e39
MD5 bc178baaac0778f7b886c63b19379fd9
BLAKE2b-256 12d3ed0220d8052f05831687951b3e519345d48e25e8f87d135f3b1a5a931804

See more details on using hashes here.

File details

Details for the file smartredis-0.5.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 396d0b788a09702037e12ac3ee0b6c66d30faf0b4fa9bab25061e3111a32ac0f
MD5 920a6bdb652f638948405254de09d082
BLAKE2b-256 ee0abcd50e8fe0120fa4bf840913c80d1328dab0078a0088a152d810430ac568

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page