Skip to main content

RedisAI clients for SmartSim

Project description



Home    Install    Documentation    Slack    Cray Labs   


License GitHub last commit PyPI - Wheel GitHub tag (latest by date) PyPI - Python Version Language Code style: black codecov

SmartRedis

SmartRedis is a collection of Redis clients that support RedisAI capabilities and include additional features for high performance computing (HPC) applications. SmartRedis provides clients in the following languages:

Language Version/Standard
Python 3.8, 3.9, 3.10, 3.11
C++ C++17
C C99
Fortran Fortran 2018 (GNU/Intel), 2003 (PGI/Nvidia)

SmartRedis is used in the SmartSim library. SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow in numerical simulations at scale. SmartRedis connects these simulations to a Redis database or Redis database cluster for data storage, script execution, and model evaluation. While SmartRedis contains features for simulation workflows on supercomputers, SmartRedis is fully functional as a RedisAI client library and can be used without SmartSim in any Python, C++, C, or Fortran project.

Using SmartRedis

SmartRedis installation instructions are currently hosted as part of the SmartSim library installation instructions Additionally, detailed API documents are also available as part of the SmartSim documentation.

Dependencies

SmartRedis utilizes the following libraries:

Publications

The following are public presentations or publications using SmartRedis

Cite

Please use the following citation when referencing SmartSim, SmartRedis, or any SmartSim related work:

Partee et al., "Using Machine Learning at scale in numerical simulations with SmartSim:
An application to ocean climate modeling",
Journal of Computational Science, Volume 62, 2022, 101707, ISSN 1877-7503.
Open Access: https://doi.org/10.1016/j.jocs.2022.101707.

bibtex

@article{PARTEE2022101707,
    title = {Using Machine Learning at scale in numerical simulations with SmartSim:
    An application to ocean climate modeling},
    journal = {Journal of Computational Science},
    volume = {62},
    pages = {101707},
    year = {2022},
    issn = {1877-7503},
    doi = {https://doi.org/10.1016/j.jocs.2022.101707},
    url = {https://www.sciencedirect.com/science/article/pii/S1877750322001065},
    author = {Sam Partee and Matthew Ellis and Alessandro Rigazzi and Andrew E. Shao
    and Scott Bachman and Gustavo Marques and Benjamin Robbins},
    keywords = {Deep learning, Numerical simulation, Climate modeling, High performance computing, SmartSim},
    }

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

smartredis-0.5.1.tar.gz (215.8 kB view details)

Uploaded Source

Built Distributions

smartredis-0.5.1-cp311-cp311-musllinux_1_1_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

smartredis-0.5.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (732.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

smartredis-0.5.1-cp311-cp311-macosx_10_9_x86_64.whl (666.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

smartredis-0.5.1-cp310-cp310-musllinux_1_1_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

smartredis-0.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (731.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

smartredis-0.5.1-cp310-cp310-macosx_10_9_x86_64.whl (665.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

smartredis-0.5.1-cp39-cp39-musllinux_1_1_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

smartredis-0.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (733.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

smartredis-0.5.1-cp39-cp39-macosx_10_9_x86_64.whl (665.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

smartredis-0.5.1-cp38-cp38-musllinux_1_1_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

smartredis-0.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (733.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

smartredis-0.5.1-cp38-cp38-macosx_10_9_x86_64.whl (665.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file smartredis-0.5.1.tar.gz.

File metadata

  • Download URL: smartredis-0.5.1.tar.gz
  • Upload date:
  • Size: 215.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for smartredis-0.5.1.tar.gz
Algorithm Hash digest
SHA256 679a75447e468838a3c69fcd991304a7d3329f8baf6137beda6822ace3d03498
MD5 43f1095cf15c7ddac4d5ff88a11b5063
BLAKE2b-256 61bd67fe3913a75c04f6038108a8661261c4332f39e4256358ea350897b88ef9

See more details on using hashes here.

File details

Details for the file smartredis-0.5.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 96850e9df97fb1a2deeecb59b026b220c9e4114cc77953c96b4cb9ba06a00c5a
MD5 ae80aee520833ece84c1bc22bf92ea2d
BLAKE2b-256 38705804f5151726e80f3798f669531932f238cac9dba3cda04e5ca4c40493e3

See more details on using hashes here.

File details

Details for the file smartredis-0.5.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b0c41a178259fdc60e71573f7f3fa92fda3cf1190021d28a80decf90c39a8616
MD5 4a9b94d0e5d03576cae8fd65ad2cecbf
BLAKE2b-256 b780313ade6e10e18ec768f0cef75f14a564214e0fc35047e2afb4e744256be9

See more details on using hashes here.

File details

Details for the file smartredis-0.5.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8c347950e04c1273939a2305bc8df5b9824061221a49d03230b4c77f069729fc
MD5 53e00591c5dd4626c72a39e736e0fdd7
BLAKE2b-256 d5fee244277c784071b36ed4755fb81400f3892148a032014266c58eae5c580d

See more details on using hashes here.

File details

Details for the file smartredis-0.5.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0801a1261d7cf664aceed2981c08a074dc8a6a64738dcf0ec2121c43b5c1d69c
MD5 9b4573ec33cf0f5961d0e4463e87f985
BLAKE2b-256 d55eefd9c128659d21495b354fb1ee1e1fd9c48567ee0bf74956823b1cfd08b8

See more details on using hashes here.

File details

Details for the file smartredis-0.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4c3dc2ae4c47e1f7ebbd6348d75330edf8d6c347e43aa9bf09e1a0ccb16a7b3d
MD5 cfe07181e42676978b7b387abe532382
BLAKE2b-256 225aa7539afb4b0dd3bf9d2842948c0057e17d93cc0e7c73ffbc9ee518eddb84

See more details on using hashes here.

File details

Details for the file smartredis-0.5.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d01e3c088b90e9b3ae67630cd25fd6b81ef3f4b2ca3ffc5b482d702c2490c1e6
MD5 64e66e2fde9641cf038849a194a78c06
BLAKE2b-256 37631f502f5c0f995b2ed1795f84e5c5f50caf19c8d7537f4a6fb7bce6b38261

See more details on using hashes here.

File details

Details for the file smartredis-0.5.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7e065ca2c312c1ce54ea60e9bef4daae5571adb40300b743c7b041d9dd3b2ebf
MD5 f13b5c10d86c3a7e2b0771eba162dc8f
BLAKE2b-256 5c9f9ec8e4a829ac78a289a851da4f2555a303ec2b9b4f258315c5a07d27386e

See more details on using hashes here.

File details

Details for the file smartredis-0.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 603caf2669a48995411a0905ad19446ae975b8ffd92a790a0178980fc1fff4e4
MD5 f9c7271c30a27c1b517e5678e2342c33
BLAKE2b-256 a93720b24f9ac840717faa8a433427f5148081085db5f571a54b10295c91c7ba

See more details on using hashes here.

File details

Details for the file smartredis-0.5.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4e070ef99f2c3f1ed4e717437ee5a18ac7442a06c1fcdb778f577ffa6e9338a3
MD5 2a7a646a6f1082ae7cf03967b0b83e86
BLAKE2b-256 ca3b2f4324df644db98e44f099a911efd014e5f00756341ce0d81ff8bad908a9

See more details on using hashes here.

File details

Details for the file smartredis-0.5.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e28ae7b6f6fad71cf2be9ae94d2040a0afc8db350fa9ad3fc6c46fea28cd15a4
MD5 5d21900d86e30dd5fe45e1fe40441c0e
BLAKE2b-256 75c6300482e679c1412e7c45df83facc8cf94ac158c1206aa66431a64672a139

See more details on using hashes here.

File details

Details for the file smartredis-0.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5859c7e8eac1446eef34d25c08355192fab67ac3a14facb81cdf6e7dcf980589
MD5 4f8d6b5c92a6b3cc9abe34a7f208d2e3
BLAKE2b-256 9c51fb609c62ce5bd76f6e9f9b48c53997d43b4c65400a8c92005fcbad758025

See more details on using hashes here.

File details

Details for the file smartredis-0.5.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 32c82c010d85e3a561f4b5ea12814a46aecd20a9ce62bc9f1f3cd9bfc4b92f76
MD5 9f512a452c1a312e24974b51b1a487da
BLAKE2b-256 f4c6d02344fb99cf8a05c5a90d400987bde0eedfed6a0818457578aea070180e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page