Skip to main content

RedisAI clients for SmartSim

Project description



Home    Install    Documentation    Slack    Cray Labs   


License GitHub last commit PyPI - Wheel GitHub tag (latest by date) PyPI - Python Version Language Code style: black codecov

SmartRedis

SmartRedis is a collection of Redis clients that support RedisAI capabilities and include additional features for high performance computing (HPC) applications. SmartRedis provides clients in the following languages:

Language Version/Standard
Python 3.8, 3.9, 3.10, 3.11
C++ C++17
C C99
Fortran Fortran 2018 (GNU/Intel), 2003 (PGI/Nvidia)

SmartRedis is used in the SmartSim library. SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow in numerical simulations at scale. SmartRedis connects these simulations to a Redis database or Redis database cluster for data storage, script execution, and model evaluation. While SmartRedis contains features for simulation workflows on supercomputers, SmartRedis is fully functional as a RedisAI client library and can be used without SmartSim in any Python, C++, C, or Fortran project.

Using SmartRedis

SmartRedis installation instructions are currently hosted as part of the SmartSim library installation instructions Additionally, detailed API documents are also available as part of the SmartSim documentation.

Dependencies

SmartRedis utilizes the following libraries:

Publications

The following are public presentations or publications using SmartRedis

Cite

Please use the following citation when referencing SmartSim, SmartRedis, or any SmartSim related work:

Partee et al., "Using Machine Learning at scale in numerical simulations with SmartSim:
An application to ocean climate modeling",
Journal of Computational Science, Volume 62, 2022, 101707, ISSN 1877-7503.
Open Access: https://doi.org/10.1016/j.jocs.2022.101707.

bibtex

@article{PARTEE2022101707,
    title = {Using Machine Learning at scale in numerical simulations with SmartSim:
    An application to ocean climate modeling},
    journal = {Journal of Computational Science},
    volume = {62},
    pages = {101707},
    year = {2022},
    issn = {1877-7503},
    doi = {https://doi.org/10.1016/j.jocs.2022.101707},
    url = {https://www.sciencedirect.com/science/article/pii/S1877750322001065},
    author = {Sam Partee and Matthew Ellis and Alessandro Rigazzi and Andrew E. Shao
    and Scott Bachman and Gustavo Marques and Benjamin Robbins},
    keywords = {Deep learning, Numerical simulation, Climate modeling, High performance computing, SmartSim},
    }

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

smartredis-0.5.2.tar.gz (215.8 kB view details)

Uploaded Source

Built Distributions

smartredis-0.5.2-cp311-cp311-musllinux_1_1_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

smartredis-0.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (732.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

smartredis-0.5.2-cp311-cp311-macosx_10_9_x86_64.whl (666.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

smartredis-0.5.2-cp310-cp310-musllinux_1_1_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

smartredis-0.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (731.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

smartredis-0.5.2-cp310-cp310-macosx_10_9_x86_64.whl (665.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

smartredis-0.5.2-cp39-cp39-musllinux_1_1_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

smartredis-0.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (733.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

smartredis-0.5.2-cp39-cp39-macosx_10_9_x86_64.whl (665.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

smartredis-0.5.2-cp38-cp38-musllinux_1_1_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

smartredis-0.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (733.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

smartredis-0.5.2-cp38-cp38-macosx_10_9_x86_64.whl (665.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file smartredis-0.5.2.tar.gz.

File metadata

  • Download URL: smartredis-0.5.2.tar.gz
  • Upload date:
  • Size: 215.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for smartredis-0.5.2.tar.gz
Algorithm Hash digest
SHA256 8f3e3ba3614830311f083ee749d756b894671ce4b547217b7abf1083cf3bbfb3
MD5 7d7a43fdcf381cdfea5036f02ad9e211
BLAKE2b-256 da0cdfcee8a37bbd8b2a6f1f7ef75b020a4050330333f772d56e011209134f3e

See more details on using hashes here.

File details

Details for the file smartredis-0.5.2-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.2-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 407b2b8856bbf65084ecb37550d3d04b01cd1ef09855e77b4c4646b68f6f0e72
MD5 d4429e9a62ae715fa73528cc556c01d8
BLAKE2b-256 f1c2ae30929025c992b6c2d69105d362fdd7121e49711f75ac470dec37c2cf60

See more details on using hashes here.

File details

Details for the file smartredis-0.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 27e567783936716dfbeb6891d39599667bc77d5887004152302fea158ec8ae75
MD5 a76e7210baefb1172bfd9368a1875534
BLAKE2b-256 41fcb434715e39c249202c7ce4c95c5ad49d919023031ba997b90e2e65d9fd12

See more details on using hashes here.

File details

Details for the file smartredis-0.5.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 963bf543cd5d696dfeeef930ec05d6078bca371caeb4f339d082426df8e7f6a5
MD5 0cdb937adfda0a6121757d7a88e0d462
BLAKE2b-256 7f4f3b314c8e59780aedcd77567ac9c7240e72a88e9207531279ff051461595e

See more details on using hashes here.

File details

Details for the file smartredis-0.5.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f488592824d9bbc2b65787728172173680b8dbb2826a8ccbd33f014defd201ce
MD5 9a81c1bafaab1a2cf769ab672996249b
BLAKE2b-256 7487656542aa553e41b3f990be53f9969dea0b01beb28421652866c0e9561b7e

See more details on using hashes here.

File details

Details for the file smartredis-0.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 512bf4e8f8d4943d845f9dc76398c4e5db3512afdd6a2f11b83eac7258e3e669
MD5 2797c70fcf6b38086a8a04f335f00b75
BLAKE2b-256 b280b05a04ccde861b5688772c062d46dac2eda6ffd404f619e9d89460dfd188

See more details on using hashes here.

File details

Details for the file smartredis-0.5.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d9f7209e0e6eb5c7c4b9cb327b56bcd6069d717ebb13bae455b292fc07c917b1
MD5 0341eb8f16877335c95d04a8662f0d2c
BLAKE2b-256 963f85d6a62126432c8ae78d595c023b73d20218cee4e4a85f959b5dd1872ba3

See more details on using hashes here.

File details

Details for the file smartredis-0.5.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ae49dda77673fe1ffb5a404e189168b92fc69e139211eb943944fb8b967a483e
MD5 112729a674a931e40119ca9d20b21fb9
BLAKE2b-256 328d4e46fb46b9c5e53be2e9298cab31de093615429c9fd1516e6e3bcd6331c8

See more details on using hashes here.

File details

Details for the file smartredis-0.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 87ad15e5b487dda4810d5abebd4ff96d9f09a42151360ecc03d403546ee9d35f
MD5 6154a6b3f0544315e46c74bf3af44801
BLAKE2b-256 0da900deffb6828b2bd284ed79276eb9c2057f4772bd66bc5eafb93c50f067df

See more details on using hashes here.

File details

Details for the file smartredis-0.5.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6f41b52a4575a28652cc800114e997ffe54fc2adcf491d9c06a89ecdf6381da4
MD5 f7cf951d9173c428bc953e7e3355d3de
BLAKE2b-256 6b5eb7a4153a17162958dcdf005b63f6c35ef4076263441d0517f5af2c8d0ace

See more details on using hashes here.

File details

Details for the file smartredis-0.5.2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 96b7339d39a4f3ea44439c8b1c2a0d0b83353921505219ea9f2ab6f6922e24c4
MD5 0bceb9e771dbb61aaf667b2eeca3aad7
BLAKE2b-256 f428f846d8434ee3d80f7f44a05b927b1f8ceaf565e7b673d20f3efbabb744ff

See more details on using hashes here.

File details

Details for the file smartredis-0.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 41ba74200c8feacd365e68716d7e7d3b3a451a9970a4c786a95dd849a43e04e3
MD5 2c65bbb5d4c2cd6244e6d95f9d281875
BLAKE2b-256 c58b9e148a02fa9f348f402348e29c2695fb6e1c2fe2acc1edcbafb805544e8a

See more details on using hashes here.

File details

Details for the file smartredis-0.5.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3e75e5b4d0570229d307863e50f7d9ae844f9b4df933d0fbf5c241cd20be36d9
MD5 53e88227e4143fd15236f8666c73decd
BLAKE2b-256 e0f022c11e6a4d59d4d088f73025e3111c5685f52a9a531a041fa8c49c41aabc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page