Skip to main content

RedisAI clients for SmartSim

Project description



Home    Install    Documentation    Slack    Cray Labs   


License GitHub last commit PyPI - Wheel GitHub tag (latest by date) PyPI - Python Version Language Code style: black codecov

SmartRedis

SmartRedis is a collection of Redis clients that support RedisAI capabilities and include additional features for high performance computing (HPC) applications. SmartRedis provides clients in the following languages:

Language Version/Standard
Python 3.9, 3.10, 3.11
C++ C++17
C C99
Fortran Fortran 2018 (GNU/Intel), 2003 (PGI/Nvidia)

SmartRedis is used in the SmartSim library. SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow in numerical simulations at scale. SmartRedis connects these simulations to a Redis database or Redis database cluster for data storage, script execution, and model evaluation. While SmartRedis contains features for simulation workflows on supercomputers, SmartRedis is fully functional as a RedisAI client library and can be used without SmartSim in any Python, C++, C, or Fortran project.

Using SmartRedis

SmartRedis installation instructions are currently hosted as part of the SmartSim library installation instructions Additionally, detailed API documents are also available as part of the SmartSim documentation.

Dependencies

SmartRedis utilizes the following libraries:

Publications

The following are public presentations or publications using SmartRedis

Cite

Please use the following citation when referencing SmartSim, SmartRedis, or any SmartSim related work:

Partee et al., "Using Machine Learning at scale in numerical simulations with SmartSim:
An application to ocean climate modeling",
Journal of Computational Science, Volume 62, 2022, 101707, ISSN 1877-7503.
Open Access: https://doi.org/10.1016/j.jocs.2022.101707.

bibtex

@article{PARTEE2022101707,
    title = {Using Machine Learning at scale in numerical simulations with SmartSim:
    An application to ocean climate modeling},
    journal = {Journal of Computational Science},
    volume = {62},
    pages = {101707},
    year = {2022},
    issn = {1877-7503},
    doi = {https://doi.org/10.1016/j.jocs.2022.101707},
    url = {https://www.sciencedirect.com/science/article/pii/S1877750322001065},
    author = {Sam Partee and Matthew Ellis and Alessandro Rigazzi and Andrew E. Shao
    and Scott Bachman and Gustavo Marques and Benjamin Robbins},
    keywords = {Deep learning, Numerical simulation, Climate modeling, High performance computing, SmartSim},
    }

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

smartredis-0.5.3.tar.gz (216.2 kB view details)

Uploaded Source

Built Distributions

smartredis-0.5.3-cp311-cp311-musllinux_1_2_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

smartredis-0.5.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (735.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

smartredis-0.5.3-cp311-cp311-macosx_10_9_x86_64.whl (667.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

smartredis-0.5.3-cp310-cp310-musllinux_1_2_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

smartredis-0.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (734.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

smartredis-0.5.3-cp310-cp310-macosx_10_9_x86_64.whl (666.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

smartredis-0.5.3-cp39-cp39-musllinux_1_2_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

smartredis-0.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (734.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

smartredis-0.5.3-cp39-cp39-macosx_10_9_x86_64.whl (666.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file smartredis-0.5.3.tar.gz.

File metadata

  • Download URL: smartredis-0.5.3.tar.gz
  • Upload date:
  • Size: 216.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for smartredis-0.5.3.tar.gz
Algorithm Hash digest
SHA256 05e98b8eb17bc57d6ac77a3269e6dd0c66f7b2cfd8bb64cb2bbc70867a7c0dba
MD5 37ce77f50506e0dd189b0ad53f396ca1
BLAKE2b-256 bce78dd4a2985b7496ed97acc18cb68d2fb042c1e015982e9373c071c437493e

See more details on using hashes here.

File details

Details for the file smartredis-0.5.3-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.3-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ffb0ff4ee0d6d4719efecf75ace3369998795edac6a1e4c415c3278af19a4498
MD5 985e22218bb0f28d5541cf8e4b5e9573
BLAKE2b-256 4f177d5bb2f3076ecc2bf1a783c65bdddcb560958c742572f8e0c4aeb356b018

See more details on using hashes here.

File details

Details for the file smartredis-0.5.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1b7c06f1545d7272c48809aba82ef6d920ff19a9993b31f9118b5899d8df5c9f
MD5 5020ed62aa586bd4a09515ab7949e88a
BLAKE2b-256 1dc6071338e5875088a303f9661a39129980f5a619328b71b287e185aba70667

See more details on using hashes here.

File details

Details for the file smartredis-0.5.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2d2ebc6ac0fbb5f94cae75c741177e4d66cdbe11a9d9e4561663c30b79ced88d
MD5 3250d89a15d555b6ccd52a2bcfe591da
BLAKE2b-256 0bca12881ed11f594cfa5a9c7ac882d5d425b7bc6e1624090cb01cb5bf69baa1

See more details on using hashes here.

File details

Details for the file smartredis-0.5.3-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.3-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 90b1378930ebfef8c73ddc3c1b943ee94ae76f1417cda4f0278f84f014ca47c2
MD5 223c3927187c0e695086a571a157b7b9
BLAKE2b-256 8977335a185e0340b4c540a2c530197ca4430dc7a0daa3e05150cded11b12e32

See more details on using hashes here.

File details

Details for the file smartredis-0.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2ec2ca808563d2e704071f22b558d63241d795cbb250fc9a6887bad712c28aab
MD5 594b918f0ce7b3e6ba2439bb5379e027
BLAKE2b-256 259f8c927d8442c708dfec248f4f06149e4d370dcfea463db736297b5d423df8

See more details on using hashes here.

File details

Details for the file smartredis-0.5.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d1d776454c4a6b0dd09821543e1160d87fe10c7435d34b42194711706e2e1ec3
MD5 66548214a35d540cedd4800aa24b1100
BLAKE2b-256 cff52584315260ea2986b30f985cb9142725b8996db25ac3ad6a81ee369d7cf8

See more details on using hashes here.

File details

Details for the file smartredis-0.5.3-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.3-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9ddd31b7c42e9881fb8a6823edb277296db7f0dbf1878e306db78b440ada19e9
MD5 484106106cb8eeb661b2d69ec5e8b7ac
BLAKE2b-256 fa0f8c0a0f19a461a9bd596b1b63f5a452b33665587777bda2f756fb42def995

See more details on using hashes here.

File details

Details for the file smartredis-0.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6736b35b64fd915405caaf4c9a11625b085eb5486c7ac82829d05853dde63858
MD5 0dae4d66e5374efa92def12a69576ee0
BLAKE2b-256 d917e0cdae15366cef295d39074afd25a714e6cb18f2eb66c0d003f73d7935b4

See more details on using hashes here.

File details

Details for the file smartredis-0.5.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.5.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f561b4974200d767027c416301a44a55026cbf001e42b9c5c01b606a1f5be217
MD5 fb37dbedaf0375b56ba8717c5838408e
BLAKE2b-256 9b5e976d092b8a5cc7da473977626c6ef22a76b8e2a6a0288ad615c4ee0da5cb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page