Skip to main content

RedisAI clients for SmartSim

Project description



Home    Install    Documentation    Slack    Cray Labs   


License GitHub last commit PyPI - Wheel GitHub tag (latest by date) PyPI - Python Version Language Code style: black codecov

SmartRedis

SmartRedis is a collection of Redis clients that support RedisAI capabilities and include additional features for high performance computing (HPC) applications. SmartRedis provides clients in the following languages:

Language Version/Standard
Python 3.9, 3.10, 3.11
C++ C++17
C C99
Fortran Fortran 2018 (GNU/Intel), 2003 (PGI/Nvidia)

SmartRedis is used in the SmartSim library. SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow in numerical simulations at scale. SmartRedis connects these simulations to a Redis database or Redis database cluster for data storage, script execution, and model evaluation. While SmartRedis contains features for simulation workflows on supercomputers, SmartRedis is fully functional as a RedisAI client library and can be used without SmartSim in any Python, C++, C, or Fortran project.

Using SmartRedis

SmartRedis installation instructions are currently hosted as part of the SmartSim library installation instructions Additionally, detailed API documents are also available as part of the SmartSim documentation.

Dependencies

SmartRedis utilizes the following libraries:

Publications

The following are public presentations or publications using SmartRedis

Cite

Please use the following citation when referencing SmartSim, SmartRedis, or any SmartSim related work:

Partee et al., "Using Machine Learning at scale in numerical simulations with SmartSim:
An application to ocean climate modeling",
Journal of Computational Science, Volume 62, 2022, 101707, ISSN 1877-7503.
Open Access: https://doi.org/10.1016/j.jocs.2022.101707.

bibtex

@article{PARTEE2022101707,
    title = {Using Machine Learning at scale in numerical simulations with SmartSim:
    An application to ocean climate modeling},
    journal = {Journal of Computational Science},
    volume = {62},
    pages = {101707},
    year = {2022},
    issn = {1877-7503},
    doi = {https://doi.org/10.1016/j.jocs.2022.101707},
    url = {https://www.sciencedirect.com/science/article/pii/S1877750322001065},
    author = {Sam Partee and Matthew Ellis and Alessandro Rigazzi and Andrew E. Shao
    and Scott Bachman and Gustavo Marques and Benjamin Robbins},
    keywords = {Deep learning, Numerical simulation, Climate modeling, High performance computing, SmartSim},
    }

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

smartredis-0.6.0.tar.gz (215.8 kB view details)

Uploaded Source

Built Distributions

smartredis-0.6.0-cp311-cp311-musllinux_1_2_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

smartredis-0.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (877.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

smartredis-0.6.0-cp311-cp311-macosx_10_9_x86_64.whl (829.6 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

smartredis-0.6.0-cp310-cp310-musllinux_1_2_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

smartredis-0.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (876.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

smartredis-0.6.0-cp310-cp310-macosx_10_9_x86_64.whl (828.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

smartredis-0.6.0-cp39-cp39-musllinux_1_2_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

smartredis-0.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (876.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

smartredis-0.6.0-cp39-cp39-macosx_10_9_x86_64.whl (828.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file smartredis-0.6.0.tar.gz.

File metadata

  • Download URL: smartredis-0.6.0.tar.gz
  • Upload date:
  • Size: 215.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for smartredis-0.6.0.tar.gz
Algorithm Hash digest
SHA256 8f4957d6776157f03303d8eff4f5e06e38a677bee933240f87af15d7654296e5
MD5 87c86b0f0d972d8315d8a5a1f84986b6
BLAKE2b-256 d828738b177e0fdc350972a362e80add99ae8fe7ab5e2268e7f39eeddabcdb05

See more details on using hashes here.

File details

Details for the file smartredis-0.6.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.6.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 2b039bba25e1fb82dab9c62f5f99d2072cd44c89e6e0ca1dec596bca700342a4
MD5 be502e81351d45cd0a2ebad57f86d031
BLAKE2b-256 ef0c50f2f09a230876c088eefb1ea7ae16a116496a8cbbd8b77fa06aa73b4199

See more details on using hashes here.

File details

Details for the file smartredis-0.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2d80c28e76991c7398c9314bf6b98f6031edae182ae5b0b074f00a84cb616645
MD5 bae8ee8bd7ed88e45ffde9c269ccda70
BLAKE2b-256 b747b1b803db15996269d814c004ea8d23d0e49837a875ad3a875c0265efc1d8

See more details on using hashes here.

File details

Details for the file smartredis-0.6.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.6.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2b9d6cac1812b47dee7e905bb5217f4895fea25cbc9ab8a9fdc05415ff59c17e
MD5 62cdbe011176c17c358d3fe6dfd520ee
BLAKE2b-256 57d12fdadf9a83c5ec1ef4e013d7b979dd02c2612e4d9886572c000f926515b1

See more details on using hashes here.

File details

Details for the file smartredis-0.6.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.6.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 89792063122ec8c8d77c74d624fc5397692f40188e9d6c21f30c5a0018800760
MD5 01087e31b1f4a6e533b7cce3535e7167
BLAKE2b-256 026e1b5e72edc65f4ea2a8460009df4cedfebf6fc73a8096c237323ff75f18f5

See more details on using hashes here.

File details

Details for the file smartredis-0.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1420120df9e6bc99968ff51797de131705816c2b70300b66e605ec02390c1ac2
MD5 1e462ce64e11fcf707cbdb57b9db1138
BLAKE2b-256 750a4adcfdf0fac817320aa8c7e78d38a47490dfa035213055492c0ada90dfa8

See more details on using hashes here.

File details

Details for the file smartredis-0.6.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.6.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8c2bd05cc0983e3707637c446aa19a6845a365b07e339c6319aa7592ba7ffe09
MD5 ea880ea16ebf3b35bd9f7735639db735
BLAKE2b-256 6c28feb904469c2c552fada8aca744052f19ba93671dc484673fc4e875e9aadf

See more details on using hashes here.

File details

Details for the file smartredis-0.6.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.6.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 6216d29d3cc7ccdbff7c85d99478281f71c28032620a65a90b0fce863ab873d4
MD5 89343a4f9ffc9becb6176cff35d0ebcb
BLAKE2b-256 fad306fed97e5627bd3882a76fdb5e8ad11d8a3556e79324d1dc636573cacc7c

See more details on using hashes here.

File details

Details for the file smartredis-0.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5e446748630681028c75d60eaecf5b1902d7d1c0958f031ae85aa3f239f7526b
MD5 dc3a2f0e0b33d72f16938dab36a75871
BLAKE2b-256 3da86ccd3a9f5ef41e8b305b1375bd5866620553162cf0717449edd026fc6dc7

See more details on using hashes here.

File details

Details for the file smartredis-0.6.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for smartredis-0.6.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2a10b4e4dfb9ccfe7b8e8ca077ffc3931d680a80ec4f846cb98c2e6faac13b2d
MD5 1626a33c5b45ebc924e7aa568a0889aa
BLAKE2b-256 722314da979da9e65a4006846e83e4bae18f23928e75af89ae4fdd762520a089

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page