Skip to main content

Generate command line options from dataclasses.

Project description

Table of Contents

  1. Install
  2. Usage
    1. Dataclass to command line options
      1. Simple types
      2. Complex types
      3. Nested dataclass
    2. APIs
      1. Example

Generate command line options from dataclasses.

# config.py
from dataclasses import dataclass, asdict, field
from smile_config import from_dataclass

@dataclass
class Train:
    """Train config."""

    batch_size: int = 64


@dataclass
class ML:
    lr: Annotated[float, dict(help="learning rate", type=float)] = 0.001
    train: Train = Train()
    cc: list[int] = field(default_factory=lambda: [10])


@dataclass
class Example:
    """Example config."""

    ml: ML = ML()
    x: bool = True
    a: int | None = None

config = from_dataclass(Example()).config

print(config)

# If autocomplete is not working, try to add the following line to your config file:
from typing import cast
config = cast(Example, config)

You can access the config as namedtuple.

> python config.py --ml.cc 10 10 --ml.lr 0.001 --no-x --a "1"
Example(ml=ML(lr=0.001, train=Train(batch_size=64), cc=[10, 10]), x=False, a=1)

Also, auto generate help message with default value.

> python config.py
usage: collections.py [-h] [--ml.lr ML.LR] [--ml.train.batch_size ML.TRAIN.BATCH_SIZE] [--ml.cc ML.CC [ML.CC ...]] [--x | --no-x] [--a A]

Example config.

options:
  -h, --help            show this help message and exit
  --x, --no-x           - (default: True)
  --a A                 - (default: None)

ml:
  --ml.lr ML.LR         learning rate (default: 0.001)
  --ml.cc ML.CC [ML.CC ...]
                        - (default: [10])

ml.train:
  --ml.train.batch_size ML.TRAIN.BATCH_SIZE
                        - (default: 64)

Install

pip install -U smile_config

Usage

Dataclass to command line options

Simple types

Everything that argpase can handle. int, float, str, bool, and callable object.

@dataclass
class Simple:
    a: int = 1
    b: float = 2.0
    c: str = "hello"
    d: bool = False
    e: list[int] = field(default_factory=lambda: [10])

Will convert to:

parser.add_argument("--a", help="-", type=int, default=1)
parser.add_argument("--b", help="-", type=float, default=2.0)
parser.add_argument("--c", help="-", type=str, default="hello")
parser.add_argument("--d", help="-", type=bool, default=False, action="store_true")
parser.add_argument("--e", help="-", type=int, default=[10], nargs="+")

Complex types

Smile config uses Annotation to handle complex types, which will pass the second argument to parser.add_argument.

@dataclass
class C:
    x: Annotated[int, "Helps for x."] = 1

See the logic here:

The first argument is the type, e.g. int.

if the second argument is str, e.g. s, it will be passed as parser.add_argument("--x", help=s, ...).

If the second argument is a list, e.g. args, it will be passed as parser.add_argument("--x", ..., *args).

If the second argument is a dict, e.g. kwds, it will be passed as parser.add_argument("--x", ..., **kwds).

Nested dataclass

Of course! It does support nested dataclass.

@dataclass
class A:
    a: int = 1

@dataclass
class B:
    a: A = A()

@dataclass
class C:
    a: A = A()
    b: B = B()
    c: int = 0


print(from_dataclass(C()).config)

# Output:
# C(a=A(a=1), b=B(a=A(a=1)), c=0)

APIs

Smile config provides four APIs:

class Config:

    # the dataclass dict
    self.conf

    # the dataclass
    self.config

# Generate command line options from dataclass.
# For formatter: `from rich_argparse import RichHelpFormatter`
# `ns`: namespaces for types.
def from_dataclass(dc: Dataclass, *, formatter: HelpFormatter = RichHelpFormatter, ns: dict | None = None) -> Config:...

# Convert dict to an existing dataclass
def from_dict(dc: Type[Dataclass], d: dict) -> Dataclass:...

# Merge a dict with an existing dataclass instance
def merge_dict(dc: Dataclass, d: dict) -> Dataclass:...

Example

@dataclass
class Eg:
    a: int = 1
    b: bool = False

conf = from_dataclass(Eg())

print(conf)  # Config
# output: Eg(a=1, b=False)

print(conf.conf)  # dict
# output: {'a': 1, 'b': False}

print(conf.config)  # Eg
# output: Eg(a=1, b=False)

conf_dc = from_dict(Eg, {"a": 2, "b": True})  # Type[Eg] -> dict -> Eg
print(conf_dc)
# output: Eg(a=2, b=True)

conf_merge = merge_dict(conf_dc, {"a": 3})  # Eg -> dict -> Eg
print(conf_merge)
# output: Eg(a=3, b=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

smile-config-0.11.0.tar.gz (9.7 kB view details)

Uploaded Source

Built Distribution

smile_config-0.11.0-py3-none-any.whl (11.2 kB view details)

Uploaded Python 3

File details

Details for the file smile-config-0.11.0.tar.gz.

File metadata

  • Download URL: smile-config-0.11.0.tar.gz
  • Upload date:
  • Size: 9.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for smile-config-0.11.0.tar.gz
Algorithm Hash digest
SHA256 e9f7f03be9b88d32f5e83e14def339d9adab6eddfd43b8795f478e80e140a4bf
MD5 c839ef72217ab37413a2ce0d2778646e
BLAKE2b-256 7874b549d902d7dd377da60662aef38689dff16101bdde18dffa9c7b44669447

See more details on using hashes here.

File details

Details for the file smile_config-0.11.0-py3-none-any.whl.

File metadata

File hashes

Hashes for smile_config-0.11.0-py3-none-any.whl
Algorithm Hash digest
SHA256 29c79b48e8a0b086acce5d7ffd0cf33b7ef185777aa1ef3bd0decbf33ac09d7e
MD5 926d3945127c1ba329c5b9f121ee7f2c
BLAKE2b-256 24621384bc8237fc1751355c619478264ca63779228e036fae947b2d204b9f82

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page