Library to programatically genrate python source code
Project description
Sourcerer
=========
![image](https://img.shields.io/pypi/v/sourcerer.svg)
Programatically generate PEP8 python source code
### Running examples
```bash
shark@tack ~/sourcerer/examples $ python swagger_to_flask.py ../sample_data/uber.yaml
shark@tack ~/sourcerer/examples $ python call_example.py
```
### Generate code from code
Let’s start with the absolute basics
```python
from sourcerer import Document, Statement
# The most important class in Sourcerer is the statement. Just about everything is a statement.
# Statements hold source code, and have a child scope. They can hold other statements.
# Even a document is just a special kind of Statement.
# A Document job is to hold statements and then output its contents.
doc = Document()
# Now we make a generic statement to assign 1 to x
s = Statement("x = 1")
# Add it to the document.
# add_child() is a member function of Statement. It will append to a Statements child scope.
doc.add_child(s)
# Now output the current document
# output() without an output_file_name will output to standard out.
doc.output()
```
**Output**:
```python
x = 1
```
Let’s use some of the purpose built tools in Sourcerer to make this easier to generate.
```python
from sourcerer import Document, Name
doc = Document()
# Names are variable/function/class/etc... names
# We'll use a good name
good_name = Name("descriptive_name")
# and a bad name
bad_name = Name("1@*plz_help")
# Add both the children at once
doc.add_children([good_name, bad_name])
doc.output()
```
**Output**:
```python
descriptive_name
plz_help
```
Notice the bad name has been transformed into a valid python name, this behavior can be turned off by setting validate=False
Let’s get back to that naive assignment we first made. We can improve it using Name and Assignment. We’ll also use Num just for good practice.
```python
from sourcerer import Document, Name, Assignment, Num
doc = Document()
# We'll wrap this up in one line because it's not that long.
# Num can take a string, int, long, float, etc...
a = Assignment(Name("x"), Num("1"))
doc.add_child(a)
doc.output()
```
**Output**:
```python
x = 1
```
Now that we’re warmed up, let’s do something more interesting. How about some functions?
```python
from sourcerer import Document, FunctionDef, Return, Str, Num, Name, Assignment, DecoratorDef, Call
doc = Document()
# A function that returns 0
func_a = FunctionDef(name=Name("get_a_zero"))
ret_a = Return(Num("0"))
func_a.add_child(ret_a)
doc.add_child(func_a)
# A function that passes. We'll put it in an list for easier consumption later
func_b = [FunctionDef(name=Name("just_pass")),
Return(_type="pass")
]
# Cascade the list of statements
doc.create_lineage(func_b)
# A function with args, and a *arg
func_c = [FunctionDef(name=Name("so_many_args"), arg_names=["a1", Name("a2")], varargs="args"),
Return(Str("Not enough time"))
]
doc.create_lineage(func_c)
# A function with kwargs, and a **
func_d = [FunctionDef(name=Name("so_many_kwargs"), kwarg_pairs={Name("a1"):"val"}, keywords="kwargs"),
Return()
]
doc.create_lineage(func_d)
# A function decorated function. Philosophy: If things get complicated, just make them a list.
func_e = [DecoratorDef(name=Name("fancy")),
FunctionDef(name=Name("pants")),
Return(Str("Hello World!"))
]
doc.create_lineage(func_e)
doc.output()
```
**Output**:
```python
def get_a_zero():
return 0
def just_pass():
pass
def so_many_args(a1, a2, *args):
return "Not enough time"
def so_many_kwargs(a1=val, **kwargs):
return
@fancy()
def pants():
return "Hello World!"
```
Here is an example that generates an extremely rough flask Blueprint from a swagger (<http://swagger.io/>) yml doc
``` python
from yaml import load
from sourcerer import Document, FunctionDef, DecoratorDef, Return, Str, Name, Call, Assignment, Attribute
from sys import argv
# Create a document to put our code in
doc = Document()
# Open our yml file and read it in
api = load(open(argv[1], 'r').read())
blueprint = Name(api['basePath'])
bp = Assignment(blueprint,
Call(name="Blueprint",
arg_names=[Str(blueprint), '__name__'],
kwarg_pairs={'template_folder': Str('templates')}))
doc.add_child(bp)
for path in api['paths']:
route = [DecoratorDef(name=Attribute(caller_list=[blueprint], name=Name('route')),
arg_names=[Str(path)]), # A decorator: @routename("mypath")
FunctionDef(name=Name(path)), # A function: def routename():
Return()] # A return statement: return
doc.create_lineage(route) # Cascade these objects into the main document scope
# ...
# @routename("mypath")
# def routename():
# return
# ...
doc.output() # Send output to standard out (output to file optional)
####################
# Without inline comments:
##
from yaml import load
from sourcerer import Document, FunctionDef, DecoratorDef, Return, Str, Name, Call, Assignment, Attribute
from sys import argv
doc = Document()
api = load(open(argv[1], 'r').read())
blueprint = Name(api['basePath'])
bp = Assignment(blueprint,
Call(name="Blueprint",
arg_names=[Str(blueprint), '__name__'],
kwarg_pairs={'template_folder': Str('templates')}))
doc.add_child(bp)
for path in api['paths']:
route = [DecoratorDef(name=Attribute(caller_list=[blueprint], name=Name('route')),
arg_names=[Str(path)]),
FunctionDef(name=Name(path)),
Return()]
doc.create_lineage(route)
doc.output()
```
**Output:**
```python
v1 = Blueprint("v1", __name__, template_folder="templates")
@v1.route("/products")
def products():
return
@v1.route("/estimates/price")
def estimatesprice():
return
@v1.route("/history")
def history():
return
@v1.route("/me")
def me():
return
@v1.route("/estimates/time")
def estimatestime():
return
```
## Technologies
* YAPF formatted output to produce pep8 compliant code
## Upcoming Features
### Generate code from Spellbooks
Source code can also be generated by ingesting and parsing a config document (ex. yaml, json, xml…), known as a Spellbook. Spellbooks can be parsed into source code be defining a schema, called a Syntax Map.
#### Example Spellbook (YAML):
```YAML
functions:
func1:
args: ['thing1', 'thing2']
kwargs: {"key1": "val1"}
varargs: false
keywords: false
ret:
value:
true
```
#### Example Syntax Map to parse this Spellbook:
```python
# Without inline comments
{"functions": {'type': FunctionDef,
'key': 'name',
'value_map': {'args': 'arg_names',
'kwargs': 'kwarg_pairs',
'varargs': 'varargs',
'keywords': 'keywords'},
'children':{'ret':'return'}},
"return": {'type': Return,
'value_map': {'value':'val'}}
}
# With inline comments
{"functions": {'type': FunctionDef, # Each top level entry under functions is a FunctionDef
'key': 'name', # The functions key (func1) is the value to the name argument for the FunctionDef
'value_map': {'args': 'arg_names', # Define what args are called in the markups schema
'kwargs': 'kwarg_pairs',
'varargs': 'varargs',
'keywords': 'keywords'},
'children':{'ret':'return'}}, # When top-level objects are seen their values will be
# pared as well, building a new object from the mapping
# they specify and then appended to this object
"return": {'type': Return,
'value_map': {'value':'val'}}
}
```
#### Building a Syntax Map for a Spellbook:
Your Syntax Maps top-level keys define what your Spellbook top-level sections are containing. The values of your Syntax Map top-level keys are dictionaries defining how to handle the contents of your Spellbook sections.
In the given example, the only top-level Spellbook section is ‘functions’. In the Syntax Map, the ‘functions’ key’s value says several things:
1. For each child node encountered, create a new FunctionObj (defined by ‘type’)
2. The key defining each child node is the ‘name’ argument for the FunctionObj
3. The sub-keys of the child node are properties of the FunctionObj. The values of those sub-keys are can be one of two things:
- If the value is in the value map, it is an argument to FunctionObj
- If the value is in the children map, it should be placed into the scope of the FunctionObj. The value will be looked up in the Syntax Map top-level to see if it can be be instantiated into a new sourcerer object.
#### The Syntax Map schema should consist of:
- type (required): The class name to instantiate
- key (required): what the key for the node represents
- value\_map (required): map properties to arguments to the class
- children: values that should be instantiated and placed into the current nodes child scope
#### Using a Syntax Map and Spellbook to generate your source:
Based on the example Syntax Map and the Example YAML, the following will write the resulting source code to stardard out
```python
from sourcerer import YAMLProcessor
gen = YAMLProcessor()
gen.load('sample_data/sample.yml')
gen.output()
```
History
-------
0.0.3 (2015-04-15)
---------------------
=========
![image](https://img.shields.io/pypi/v/sourcerer.svg)
Programatically generate PEP8 python source code
### Running examples
```bash
shark@tack ~/sourcerer/examples $ python swagger_to_flask.py ../sample_data/uber.yaml
shark@tack ~/sourcerer/examples $ python call_example.py
```
### Generate code from code
Let’s start with the absolute basics
```python
from sourcerer import Document, Statement
# The most important class in Sourcerer is the statement. Just about everything is a statement.
# Statements hold source code, and have a child scope. They can hold other statements.
# Even a document is just a special kind of Statement.
# A Document job is to hold statements and then output its contents.
doc = Document()
# Now we make a generic statement to assign 1 to x
s = Statement("x = 1")
# Add it to the document.
# add_child() is a member function of Statement. It will append to a Statements child scope.
doc.add_child(s)
# Now output the current document
# output() without an output_file_name will output to standard out.
doc.output()
```
**Output**:
```python
x = 1
```
Let’s use some of the purpose built tools in Sourcerer to make this easier to generate.
```python
from sourcerer import Document, Name
doc = Document()
# Names are variable/function/class/etc... names
# We'll use a good name
good_name = Name("descriptive_name")
# and a bad name
bad_name = Name("1@*plz_help")
# Add both the children at once
doc.add_children([good_name, bad_name])
doc.output()
```
**Output**:
```python
descriptive_name
plz_help
```
Notice the bad name has been transformed into a valid python name, this behavior can be turned off by setting validate=False
Let’s get back to that naive assignment we first made. We can improve it using Name and Assignment. We’ll also use Num just for good practice.
```python
from sourcerer import Document, Name, Assignment, Num
doc = Document()
# We'll wrap this up in one line because it's not that long.
# Num can take a string, int, long, float, etc...
a = Assignment(Name("x"), Num("1"))
doc.add_child(a)
doc.output()
```
**Output**:
```python
x = 1
```
Now that we’re warmed up, let’s do something more interesting. How about some functions?
```python
from sourcerer import Document, FunctionDef, Return, Str, Num, Name, Assignment, DecoratorDef, Call
doc = Document()
# A function that returns 0
func_a = FunctionDef(name=Name("get_a_zero"))
ret_a = Return(Num("0"))
func_a.add_child(ret_a)
doc.add_child(func_a)
# A function that passes. We'll put it in an list for easier consumption later
func_b = [FunctionDef(name=Name("just_pass")),
Return(_type="pass")
]
# Cascade the list of statements
doc.create_lineage(func_b)
# A function with args, and a *arg
func_c = [FunctionDef(name=Name("so_many_args"), arg_names=["a1", Name("a2")], varargs="args"),
Return(Str("Not enough time"))
]
doc.create_lineage(func_c)
# A function with kwargs, and a **
func_d = [FunctionDef(name=Name("so_many_kwargs"), kwarg_pairs={Name("a1"):"val"}, keywords="kwargs"),
Return()
]
doc.create_lineage(func_d)
# A function decorated function. Philosophy: If things get complicated, just make them a list.
func_e = [DecoratorDef(name=Name("fancy")),
FunctionDef(name=Name("pants")),
Return(Str("Hello World!"))
]
doc.create_lineage(func_e)
doc.output()
```
**Output**:
```python
def get_a_zero():
return 0
def just_pass():
pass
def so_many_args(a1, a2, *args):
return "Not enough time"
def so_many_kwargs(a1=val, **kwargs):
return
@fancy()
def pants():
return "Hello World!"
```
Here is an example that generates an extremely rough flask Blueprint from a swagger (<http://swagger.io/>) yml doc
``` python
from yaml import load
from sourcerer import Document, FunctionDef, DecoratorDef, Return, Str, Name, Call, Assignment, Attribute
from sys import argv
# Create a document to put our code in
doc = Document()
# Open our yml file and read it in
api = load(open(argv[1], 'r').read())
blueprint = Name(api['basePath'])
bp = Assignment(blueprint,
Call(name="Blueprint",
arg_names=[Str(blueprint), '__name__'],
kwarg_pairs={'template_folder': Str('templates')}))
doc.add_child(bp)
for path in api['paths']:
route = [DecoratorDef(name=Attribute(caller_list=[blueprint], name=Name('route')),
arg_names=[Str(path)]), # A decorator: @routename("mypath")
FunctionDef(name=Name(path)), # A function: def routename():
Return()] # A return statement: return
doc.create_lineage(route) # Cascade these objects into the main document scope
# ...
# @routename("mypath")
# def routename():
# return
# ...
doc.output() # Send output to standard out (output to file optional)
####################
# Without inline comments:
##
from yaml import load
from sourcerer import Document, FunctionDef, DecoratorDef, Return, Str, Name, Call, Assignment, Attribute
from sys import argv
doc = Document()
api = load(open(argv[1], 'r').read())
blueprint = Name(api['basePath'])
bp = Assignment(blueprint,
Call(name="Blueprint",
arg_names=[Str(blueprint), '__name__'],
kwarg_pairs={'template_folder': Str('templates')}))
doc.add_child(bp)
for path in api['paths']:
route = [DecoratorDef(name=Attribute(caller_list=[blueprint], name=Name('route')),
arg_names=[Str(path)]),
FunctionDef(name=Name(path)),
Return()]
doc.create_lineage(route)
doc.output()
```
**Output:**
```python
v1 = Blueprint("v1", __name__, template_folder="templates")
@v1.route("/products")
def products():
return
@v1.route("/estimates/price")
def estimatesprice():
return
@v1.route("/history")
def history():
return
@v1.route("/me")
def me():
return
@v1.route("/estimates/time")
def estimatestime():
return
```
## Technologies
* YAPF formatted output to produce pep8 compliant code
## Upcoming Features
### Generate code from Spellbooks
Source code can also be generated by ingesting and parsing a config document (ex. yaml, json, xml…), known as a Spellbook. Spellbooks can be parsed into source code be defining a schema, called a Syntax Map.
#### Example Spellbook (YAML):
```YAML
functions:
func1:
args: ['thing1', 'thing2']
kwargs: {"key1": "val1"}
varargs: false
keywords: false
ret:
value:
true
```
#### Example Syntax Map to parse this Spellbook:
```python
# Without inline comments
{"functions": {'type': FunctionDef,
'key': 'name',
'value_map': {'args': 'arg_names',
'kwargs': 'kwarg_pairs',
'varargs': 'varargs',
'keywords': 'keywords'},
'children':{'ret':'return'}},
"return": {'type': Return,
'value_map': {'value':'val'}}
}
# With inline comments
{"functions": {'type': FunctionDef, # Each top level entry under functions is a FunctionDef
'key': 'name', # The functions key (func1) is the value to the name argument for the FunctionDef
'value_map': {'args': 'arg_names', # Define what args are called in the markups schema
'kwargs': 'kwarg_pairs',
'varargs': 'varargs',
'keywords': 'keywords'},
'children':{'ret':'return'}}, # When top-level objects are seen their values will be
# pared as well, building a new object from the mapping
# they specify and then appended to this object
"return": {'type': Return,
'value_map': {'value':'val'}}
}
```
#### Building a Syntax Map for a Spellbook:
Your Syntax Maps top-level keys define what your Spellbook top-level sections are containing. The values of your Syntax Map top-level keys are dictionaries defining how to handle the contents of your Spellbook sections.
In the given example, the only top-level Spellbook section is ‘functions’. In the Syntax Map, the ‘functions’ key’s value says several things:
1. For each child node encountered, create a new FunctionObj (defined by ‘type’)
2. The key defining each child node is the ‘name’ argument for the FunctionObj
3. The sub-keys of the child node are properties of the FunctionObj. The values of those sub-keys are can be one of two things:
- If the value is in the value map, it is an argument to FunctionObj
- If the value is in the children map, it should be placed into the scope of the FunctionObj. The value will be looked up in the Syntax Map top-level to see if it can be be instantiated into a new sourcerer object.
#### The Syntax Map schema should consist of:
- type (required): The class name to instantiate
- key (required): what the key for the node represents
- value\_map (required): map properties to arguments to the class
- children: values that should be instantiated and placed into the current nodes child scope
#### Using a Syntax Map and Spellbook to generate your source:
Based on the example Syntax Map and the Example YAML, the following will write the resulting source code to stardard out
```python
from sourcerer import YAMLProcessor
gen = YAMLProcessor()
gen.load('sample_data/sample.yml')
gen.output()
```
History
-------
0.0.3 (2015-04-15)
---------------------
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
sourcerer-1.0b8_fixed.tar.gz
(25.3 kB
view hashes)
Built Distribution
Close
Hashes for sourcerer-1.0b8_fixed-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 98704775a49376de110341d89dde5adc6570037042c9ddb7b4aa606bd69e3ff2 |
|
MD5 | f7cd7f931d448129dc9bc6bb2b87f76c |
|
BLAKE2b-256 | cf1526acce6ae1b346db7b821e98d00c98b426a4a1fca513fc90d030804619a2 |