Skip to main content

Spectacular AI Python library

Project description

The SDK performs 6-DoF pose tracking based on visual-inertial SLAM (VISLAM), the fusion of camera and IMU data. See https://github.com/SpectacularAI/sdk-examples for more information.

License

Free for non-commercial use.

A list of 3rd party copyright notices that should be included in redistributions is provided as the LICENSE.txt file in the Python Wheels.

For more alternatives (custom devices), CPU architectures (ARM) and commercial licensing options, contact us at https://www.spectacularai.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

spectacularAI-1.34.0-cp311-cp311-win_amd64.whl (7.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

spectacularAI-1.34.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

spectacularAI-1.34.0-cp310-cp310-win_amd64.whl (7.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

spectacularAI-1.34.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

spectacularAI-1.34.0-cp39-cp39-win_amd64.whl (6.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

spectacularAI-1.34.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

spectacularAI-1.34.0-cp38-cp38-win_amd64.whl (7.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

spectacularAI-1.34.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

spectacularAI-1.34.0-cp37-cp37m-win_amd64.whl (6.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

spectacularAI-1.34.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

File details

Details for the file spectacularAI-1.34.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.34.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 7.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.31.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.34.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e872c973d9f110f22d1b2569dc52294bf9336799d94985fe7b9cfde9b3bfc549
MD5 a548f7462f7a27cd24c6abf85213ce13
BLAKE2b-256 a11c7773adfedc8d86ec6b88cb1cc379d36ec2d77d27c626a9a94c66f538fd37

See more details on using hashes here.

File details

Details for the file spectacularAI-1.34.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.34.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 12.0 MB
  • Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.31.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.34.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9b11a3ed17d8da21809311a70d2e357666b7bf2d870e82fe061c70c4e45fab5a
MD5 e4210155f4ef92771fef44f97f096bbf
BLAKE2b-256 35188993fd53551ae5125d0eb9bcef25dff8523cac3338010f32bae72da82105

See more details on using hashes here.

File details

Details for the file spectacularAI-1.34.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.34.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 7.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.31.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.34.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f5087c06bdfc1761758a40207d650af61da679d3bb1a39779716dba64e4d461e
MD5 644d2798e56bd1571f914fb40751db52
BLAKE2b-256 e12e47ddb02ca44d2d7610f1898bffe560cbf9a83db690c0a42afa034b76fd51

See more details on using hashes here.

File details

Details for the file spectacularAI-1.34.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.34.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 12.0 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.31.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.34.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b00235e341016461885666cfebdacf3dc17936810bf6c9b978c6a56073e12a3d
MD5 a373896413d829d6200d27abe9029056
BLAKE2b-256 78f01d0c3f3fef500871b1ecb97bfd455b718b81130baa3e08ae6a7388a93a5d

See more details on using hashes here.

File details

Details for the file spectacularAI-1.34.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.34.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 6.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.31.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.34.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ae1180f997dce982041923e1d753704cfbe8a0366aa80e2f201024e66fd4683e
MD5 06b4217fbbf2a998b04bd9f773ea34fb
BLAKE2b-256 9a251b296e5e8de7155a77f4c97c0da61dd2d2d3d00800dabd3dbeac5560ddf6

See more details on using hashes here.

File details

Details for the file spectacularAI-1.34.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.34.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 12.0 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.31.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.34.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 97bd6d1e7bdd1a2a2c0062b3164f38b951a8147017479bb63b06025fe0d700f4
MD5 94bb650dc18865ef4db1d642e385c8e2
BLAKE2b-256 c176ae00adbf520084401afe171eb19c2d4665d6166e358794f1215369ea4878

See more details on using hashes here.

File details

Details for the file spectacularAI-1.34.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.34.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 7.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.31.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.34.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 faad0c2db6c4984e48578fa353aee9497d5c9a0c620a1be6edf9c4ef0a16df6b
MD5 35c88af8e4f6597e507ba8a19250c13e
BLAKE2b-256 129063016f5478a9571b6866d3510c20b854e421109f907a39a98422f8387265

See more details on using hashes here.

File details

Details for the file spectacularAI-1.34.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.34.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 12.0 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.31.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.34.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 207d3aaad82f8f9614f4a242e94338670efc97f309a74fa93de663e723ddd8cd
MD5 4a9eb1c47f3e816f32e281d408be480d
BLAKE2b-256 dde3c1b258161f6dab61ab1dc971ef6d7d89f2e7e127566d15af1c024703d4a9

See more details on using hashes here.

File details

Details for the file spectacularAI-1.34.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.34.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 6.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.31.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.34.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f37ddeb0dd18f15fc984aecee3f7b8e765518f0ba7b5f6957f4ec000ede34cd0
MD5 c9c9bfda8109524a7e6582fd724772f7
BLAKE2b-256 c6179748421cf005571f49aeb05eeb8d2c2d336535dd3d032360ce5fb46fdf93

See more details on using hashes here.

File details

Details for the file spectacularAI-1.34.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.34.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 12.0 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.31.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.34.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c02a1a68b0ae2592ca893b562ff6efeefda48894fcd014a8dd127197291ff527
MD5 78b7f770876c90dc9f38f34d4e2b6ccc
BLAKE2b-256 32ac0131a22be5f5c3c267d1a13bcf0b6bf44719132e1a50480a27f90c340ba6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page