Skip to main content

Spectacular AI Python library

Project description

The SDK performs 6-DoF pose tracking based on visual-inertial SLAM (VISLAM), the fusion of camera and IMU data. See https://github.com/SpectacularAI/sdk-examples for more information.

License

Free for non-commercial use.

A list of 3rd party copyright notices that should be included in redistributions is provided as the LICENSE.txt file in the Python Wheels.

For more alternatives (custom devices), CPU architectures (ARM) and commercial licensing options, contact us at https://www.spectacularai.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

spectacularAI-1.37.0-cp312-cp312-win_amd64.whl (7.0 MB view details)

Uploaded CPython 3.12 Windows x86-64

spectacularAI-1.37.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

spectacularAI-1.37.0-cp311-cp311-win_amd64.whl (7.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

spectacularAI-1.37.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

spectacularAI-1.37.0-cp310-cp310-win_amd64.whl (7.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

spectacularAI-1.37.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

spectacularAI-1.37.0-cp39-cp39-win_amd64.whl (7.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

spectacularAI-1.37.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

spectacularAI-1.37.0-cp38-cp38-win_amd64.whl (7.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

spectacularAI-1.37.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

spectacularAI-1.37.0-cp37-cp37m-win_amd64.whl (7.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

spectacularAI-1.37.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

File details

Details for the file spectacularAI-1.37.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.37.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 7.0 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.26.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.20 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.37.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 8efa247347fda64315fd141e69637c7054dd0184e95f7d126758a42554ef219e
MD5 94add9c65c8f54ebf5104721583c9497
BLAKE2b-256 70c05d591d5d8da5fb4e857ecd865856d57f740b3cb2c8265fe6522acea18fe0

See more details on using hashes here.

File details

Details for the file spectacularAI-1.37.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.37.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.12, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.26.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.20 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.37.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d2f51bcef3de8ee2859bb765fe997034c0a0f353f16c764a1449054daa9571a0
MD5 d7b4bcd3edd55505019559c790f61002
BLAKE2b-256 4233c3e392945e5b51bc5196a73cb90c2de045f659b1cd5c09d1b933ab47c7cf

See more details on using hashes here.

File details

Details for the file spectacularAI-1.37.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.37.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 7.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.26.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.20 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.37.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e331300da71ad372656ebdbf88d916a270877a6a102a7a3f9f87e62b33ae09e8
MD5 b52695e5c1002eaf063d7a32eacedd54
BLAKE2b-256 947c0a45b2db3f7dc041c96bffb2c0d95d9f14bb2b764bd10e63fa9265bfe136

See more details on using hashes here.

File details

Details for the file spectacularAI-1.37.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.37.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.26.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.20 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.37.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a39b9491feac69edfbdcb0a9b247ddad95f545dedd4a04f9b6e8aa12dcddf547
MD5 b4a86f66c2f29506c0f4c48b8d80d60b
BLAKE2b-256 61f40e476f35240cc7c0be6c5e53beb7087b25d5c124ab2430737e9fda363d93

See more details on using hashes here.

File details

Details for the file spectacularAI-1.37.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.37.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 7.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.26.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.20 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.37.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8e064eef51e9d085ea9342d1ba27ad23d097212d65e514969a569c213b8f4536
MD5 5878325a276d8863991014933dfb9273
BLAKE2b-256 a95975f28a86fe2b7264a8559451323464343dae50ed4185aad410be4076a30c

See more details on using hashes here.

File details

Details for the file spectacularAI-1.37.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.37.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.26.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.20 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.37.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 94dc17f3d73656de2087231c6208360fd236ccfe76a82b21b2eb9d732e78b68d
MD5 c8d0f47f45ca2a12dde5b4033712293f
BLAKE2b-256 df4fae104dbd163d0b2fa1b4cfd05f2500900c073d62a8ee898b2af959183a21

See more details on using hashes here.

File details

Details for the file spectacularAI-1.37.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.37.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 7.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.26.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.20 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.37.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b7315443c896798dbc82a37f85ef4d3c496db947827c4fdffbc75c796b2c4264
MD5 5024f45bde39a05fdd89e741901d5170
BLAKE2b-256 342804f1f2ba82e975b56162049258eeceb6e4cc0cfdbbe62ff72631fea8fd9c

See more details on using hashes here.

File details

Details for the file spectacularAI-1.37.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.37.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.26.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.20 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.37.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 88c46537df95a75014ce32f66e9f2a30d302cee6d6c09ed68bed119ffe4f7a18
MD5 81417aa8d2e64516740f632e2e0f1965
BLAKE2b-256 1c181b9579b2f0bcb0d8a9310c6d503d88d26eef72d81632be77547e1214930c

See more details on using hashes here.

File details

Details for the file spectacularAI-1.37.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.37.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 7.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.26.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.20 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.37.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 532a2c898ca7bcd2f13f6657ab27aded399eeb32739361291a1e7f09f3a945a3
MD5 140a11e7ad791aab2e165639e705f53f
BLAKE2b-256 a20c0f0d0491ffdc5b6fc8b66c845d52424ff4af4f87677493ec03fae23c1dfa

See more details on using hashes here.

File details

Details for the file spectacularAI-1.37.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.37.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.26.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.20 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.37.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 254cea54b180f119a730747de443fd22af2f072dabf61f43ac289bef682a2b05
MD5 e7eac0ed3f4796da16341584143831f4
BLAKE2b-256 8f9d310442cc5d93561e3730b7327b651c47da61c55d1b172922303da5082590

See more details on using hashes here.

File details

Details for the file spectacularAI-1.37.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: spectacularAI-1.37.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 7.0 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.26.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.20 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.37.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ab33ed9aea1129d46aa54bbd19602348b7a3f7f90e35a008b2afbfeb2fd27294
MD5 cda02c3812d503a390f6414adae9d679
BLAKE2b-256 705153cedc71836fd09faf93aa48891962933fdf36605c2fc6571b2f9e88837e

See more details on using hashes here.

File details

Details for the file spectacularAI-1.37.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: spectacularAI-1.37.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.26.0 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.20 CPython/3.10.12

File hashes

Hashes for spectacularAI-1.37.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a62037a16b03232fd13fa2ccee10d7836baa4eeec55516488ec4647a9b707116
MD5 5bc57ccc7676e769a863b82841c071b6
BLAKE2b-256 3e7873be31b0d0ce7a244130c54eefd5c7ac260ee3f837f193693ac8d1455fc8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page