Skip to main content

Speechly Public Protobuf Stubs

Project description

Python Speechly API

See the generic Speechly gRPC stubs documentation for more information about using the API.

A complete example on how to stream audio from a file to the Speechly API can be found in speechly_grpc_example.py.

Install

Install the latest package using pip:

pip install speechly-api

Note that the minimum python version supported is 3.6.

Using Python Stubs

The stubs are generated for the default grpcio python package, and the examples are using asyncio.

Creating a Channel

In python, the default authority of the channel needs to be overridden, as it defaults to a string containing the port number. This will not work with the API, so we set the DNS name manually:

channel = grpc.aio.secure_channel(
    target='api.speechly.com:443',
    credentials=grpc.ssl_channel_credentials(),
    options=[('grpc.default_authority', 'api.speechly.com')]
)

IdentityAPI

Login with speechly.identity.v2.IdentityAPI using an app_id:

async def login(channel, device_id, app_id=None, project_id=None):
    assert device_id, 'UUID device_is required'
    assert (app_id or project_id), 'app_id or project_id is required'
    identity_api = IdentityAPIStub(channel)
    req = LoginRequest(device_id=device_id)
    if app_id:
        # if a token with a single app_id is required:
        req.application.app_id = app_id
    else:
        # get a token that is usable for all apps in project:
        req.project.project_id = project_id
    response = await identity_api.Login(req)
    token = response.token
    expires = datetime.fromisoformat(response.expires_at)
    return token, expires

SLU

Open a bidirectional stream to speechly.slu.v1.SLU/Stream and send audio from a source generator to the API. The following example assumes that the audio_stream is an iterator that yields audio with 1 channel and sample rate 16KHz, in bytes chunks:

async def stream_speech(channel, token, audio_stream, app_id=None):
    auth = ('authorization', f'Bearer {token}')

    async def read_responses(stream):
        transcript = []
        intent = ''
        entities = []
        resp = await stream.read()
        while resp != grpc.aio.EOF:
            if resp.HasField('started'):
                print(f'audioContext {resp.audio_context} started')
            elif resp.HasField('transcript'):
                transcript.append(resp.transcript.word)
            elif resp.HasField('entity'):
                entities.append(resp.entity.entity)
            elif resp.HasField('intent'):
                intent = resp.intent.intent
            elif resp.HasField('finished'):
                print(f'audioContext {resp.audio_context} finished')
            resp = await stream.read()
        return intent, entities, transcript

    async def send_audio(stream, source):
        await stream.write(SLURequest(event=SLUEvent(event='START', app_id=app_id)))
        for chunk in source:
            await stream.write(SLURequest(audio=chunk))
        await stream.write(SLURequest(event=SLUEvent(event='STOP')))
        await stream.done_writing()

    async with channel:
        slu = SLUStub(channel)
        try:
            stream = slu.Stream(metadata=[auth])
            config = SLUConfig(channels=1, sample_rate_hertz=16000)
            await stream.write(SLURequest(config=config))
            recv = read_responses(stream)
            send = send_audio(stream, audio_stream)
            r = await asyncio.gather(recv, send)
            intent, entities, transcript = r[0]
            print('Intent:', intent)
            print('Entities:', ', '.join(entities))
            print('Transcript:', ' '.join(transcript))
        except grpc.aio.AioRpcError as e:
            print('Error in SLU', str(e.code()), e.details())

Using the HTTP REST API

The gRPC API is available also as JSON-based HTTP version. The following is an example of calling the BatchAPI with python requests library:

import requests
import uuid
import base64
import time

# read an audio file in memory (note that the it should be PCM 16Khz 1 channels to get good results)
with open('test1_en.wav', 'rb') as f:
    audio_data = f.read()

# create a device ID (uuid)
deviceId = uuid.uuid4()

# get a Speechly access token to use the correct Speechly app
r = requests.post(
    'https://api.speechly.com/speechly.identity.v2.IdentityAPI/Login',
    json={'deviceId': str(deviceId), 'application': {'appId': 'YOUR_APP_ID'}}
)
token = r.json()['token']

# send the file to the BatchAPI to create a batch transcribe operation
batch_req = [{
    'config': {
        'encoding': 1,
        'channels': 1,
        'sampleRateHertz': 16000
    },
    'audio': base64.b64encode(audio_data).decode('ascii')
}]
r = requests.post(
    'https://api.speechly.com/speechly.slu.v1.BatchAPI/ProcessAudio',
    headers={'authorization':f'Bearer {token}'},
    json=batch_req
)
op = r.json()['operation']

# poll the BatchAPI, waiting for the batch operation to be done
while op['status'] != 'STATUS_DONE':
    time.sleep(1)
    r = requests.post(
        'https://api.speechly.com/speechly.slu.v1.BatchAPI/QueryStatus',
        headers={'authorization':f'Bearer {token}'},
        json={'id': op['id']}
    )
    op = r.json()['operation']
    if op['error'] != '':
        raise Exception('error in transcribe: ' + op['error'])

# collect the words from the transcripts
transcript = [w['word'] for w in op['transcripts']]
print(' '.join(transcript))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

speechly_api-0.8.10.tar.gz (37.3 kB view details)

Uploaded Source

Built Distribution

speechly_api-0.8.10-py3-none-any.whl (52.0 kB view details)

Uploaded Python 3

File details

Details for the file speechly_api-0.8.10.tar.gz.

File metadata

  • Download URL: speechly_api-0.8.10.tar.gz
  • Upload date:
  • Size: 37.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.6

File hashes

Hashes for speechly_api-0.8.10.tar.gz
Algorithm Hash digest
SHA256 3f313479be695402c76663ae7ce680699135e318facf93a81f682b6e02de6cce
MD5 6237e7f07d106d0ae89856f277bd3db1
BLAKE2b-256 2c470f67d2cb5d71ade82a4925110d01b3c34b2d170716f98800abc643303bf6

See more details on using hashes here.

File details

Details for the file speechly_api-0.8.10-py3-none-any.whl.

File metadata

File hashes

Hashes for speechly_api-0.8.10-py3-none-any.whl
Algorithm Hash digest
SHA256 f911266cf7218e797d46808e06cbbaef11bc5e9f11f1ca9605fe8783149ae28a
MD5 09381ef48bf541ba672bd11b6d061654
BLAKE2b-256 26ac13ba749ff4b73627b9d085f46eee37bd59c206816515b0af27d75c5f6dff

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page