Skip to main content

Speechly Public Protobuf Stubs

Project description

Python Speechly API

See the generic Speechly gRPC stubs documentation for more information about using the API.

A complete example on how to stream audio from a file to the Speechly API can be found in speechly_grpc_example.py.

Install

Install the latest package using pip:

pip install speechly-api

Note that the minimum python version supported is 3.6.

Using Python Stubs

The stubs are generated for the default grpcio python package, and the examples are using asyncio.

Creating a Channel

In python, the default authority of the channel needs to be overridden, as it defaults to a string containing the port number. This will not work with the API, so we set the DNS name manually:

channel = grpc.aio.secure_channel(
    target='api.speechly.com:443',
    credentials=grpc.ssl_channel_credentials(),
    options=[('grpc.default_authority', 'api.speechly.com')]
)

IdentityAPI

Login with speechly.identity.v2.IdentityAPI using an app_id:

async def login(channel, device_id, app_id=None, project_id=None):
    assert device_id, 'UUID device_is required'
    assert (app_id or project_id), 'app_id or project_id is required'
    identity_api = IdentityAPIStub(channel)
    req = LoginRequest(device_id=device_id)
    if app_id:
        # if a token with a single app_id is required:
        req.application.app_id = app_id
    else:
        # get a token that is usable for all apps in project:
        req.project.project_id = project_id
    response = await identity_api.Login(req)
    token = response.token
    expires = datetime.fromisoformat(response.expires_at)
    return token, expires

SLU

Open a bidirectional stream to speechly.slu.v1.SLU/Stream and send audio from a source generator to the API. The following example assumes that the audio_stream is an iterator that yields audio with 1 channel and sample rate 16KHz, in bytes chunks:

async def stream_speech(channel, token, audio_stream, app_id=None):
    auth = ('authorization', f'Bearer {token}')

    async def read_responses(stream):
        transcript = []
        intent = ''
        entities = []
        resp = await stream.read()
        while resp != grpc.aio.EOF:
            if resp.HasField('started'):
                print(f'audioContext {resp.audio_context} started')
            elif resp.HasField('transcript'):
                transcript.append(resp.transcript.word)
            elif resp.HasField('entity'):
                entities.append(resp.entity.entity)
            elif resp.HasField('intent'):
                intent = resp.intent.intent
            elif resp.HasField('finished'):
                print(f'audioContext {resp.audio_context} finished')
            resp = await stream.read()
        return intent, entities, transcript

    async def send_audio(stream, source):
        await stream.write(SLURequest(event=SLUEvent(event='START', app_id=app_id)))
        for chunk in source:
            await stream.write(SLURequest(audio=chunk))
        await stream.write(SLURequest(event=SLUEvent(event='STOP')))
        await stream.done_writing()

    async with channel:
        slu = SLUStub(channel)
        try:
            stream = slu.Stream(metadata=[auth])
            config = SLUConfig(channels=1, sample_rate_hertz=16000)
            await stream.write(SLURequest(config=config))
            recv = read_responses(stream)
            send = send_audio(stream, audio_stream)
            r = await asyncio.gather(recv, send)
            intent, entities, transcript = r[0]
            print('Intent:', intent)
            print('Entities:', ', '.join(entities))
            print('Transcript:', ' '.join(transcript))
        except grpc.aio.AioRpcError as e:
            print('Error in SLU', str(e.code()), e.details())

Using the HTTP REST API

The gRPC API is available also as JSON-based HTTP version. The following is an example of calling the BatchAPI with python requests library:

import requests
import uuid
import base64
import time

# read an audio file in memory (note that the it should be PCM 16Khz 1 channels to get good results)
with open('test1_en.wav', 'rb') as f:
    audio_data = f.read()

# create a device ID (uuid)
deviceId = uuid.uuid4()

# get a Speechly access token to use the correct Speechly app
r = requests.post(
    'https://api.speechly.com/speechly.identity.v2.IdentityAPI/Login',
    json={'deviceId': str(deviceId), 'application': {'appId': 'YOUR_APP_ID'}}
)
token = r.json()['token']

# send the file to the BatchAPI to create a batch transcribe operation
batch_req = [{
    'config': {
        'encoding': 1,
        'channels': 1,
        'sampleRateHertz': 16000
    },
    'audio': base64.b64encode(audio_data).decode('ascii')
}]
r = requests.post(
    'https://api.speechly.com/speechly.slu.v1.BatchAPI/ProcessAudio',
    headers={'authorization':f'Bearer {token}'},
    json=batch_req
)
op = r.json()['operation']

# poll the BatchAPI, waiting for the batch operation to be done
while op['status'] != 'STATUS_DONE':
    time.sleep(1)
    r = requests.post(
        'https://api.speechly.com/speechly.slu.v1.BatchAPI/QueryStatus',
        headers={'authorization':f'Bearer {token}'},
        json={'id': op['id']}
    )
    op = r.json()['operation']
    if op['error'] != '':
        raise Exception('error in transcribe: ' + op['error'])

# collect the words from the transcripts
transcript = [w['word'] for w in op['transcripts']]
print(' '.join(transcript))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

speechly_api-0.8.15.tar.gz (43.4 kB view details)

Uploaded Source

Built Distribution

speechly_api-0.8.15-py3-none-any.whl (60.4 kB view details)

Uploaded Python 3

File details

Details for the file speechly_api-0.8.15.tar.gz.

File metadata

  • Download URL: speechly_api-0.8.15.tar.gz
  • Upload date:
  • Size: 43.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.6

File hashes

Hashes for speechly_api-0.8.15.tar.gz
Algorithm Hash digest
SHA256 00b0b42dd24bb83d5da0a75fad43ef5af43f47abf03e709a81d4cd77fd1b9fad
MD5 b5ac31b57fa516bc66b5b24159afcd0d
BLAKE2b-256 23d67280db776d4e9266c66990123443ca095f2558e0efd7569cb078f0a0ae23

See more details on using hashes here.

File details

Details for the file speechly_api-0.8.15-py3-none-any.whl.

File metadata

File hashes

Hashes for speechly_api-0.8.15-py3-none-any.whl
Algorithm Hash digest
SHA256 e4f2ddb611da4570523439e7eea1d4a8676429fbe7246111205bc3eeb4e1b5e7
MD5 31a13e997a32dffa3660286c3229a97c
BLAKE2b-256 f55904207e9aa06c40e6587174218a49fb2132fd536c481432502ffb22db14a6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page