Skip to main content

Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together

Project description

SpeechMix

Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together.

Introduction

For the same input:

from datasets import load_dataset
import soundfile as sf


# define function to read in sound file
def map_to_array(batch):
    speech, _ = sf.read(batch["file"])
    batch["speech"] = speech
    return batch


# load dummy dataset and read soundfiles
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
ds = ds.map(map_to_array)

transcript = ds['text'][0]
speech = ds["speech"][0]

Speech encoder NLP decoder

model = SpeechMixED("facebook/wav2vec2-base-960h", "facebook/bart-large")

transcript_tensor = model.tokenizer(transcript, return_tensors="pt").input_ids
speech_tensor = model.processor(speech, return_tensors="pt").input_values

model(speech_tensor, transcript_tensor)

Speech encoder NLP decoder only fine-tune on cross attention/projection/decoder embedding

model = SpeechMixED("facebook/wav2vec2-base-960h", "facebook/bart-large", ftl=True)

transcript_tensor = model.tokenizer(transcript, return_tensors="pt").input_ids
speech_tensor = model.processor(speech, return_tensors="pt").input_values

model(speech_tensor, transcript_tensor)

Speech encoder NLP encoder decoder

model = SpeechMixEED("facebook/wav2vec2-base-960h", "facebook/bart-large")

transcript_tensor = model.tokenizer(transcript, return_tensors="pt").input_ids
speech_tensor = model.processor(speech, return_tensors="pt").input_values

model(speech_tensor, transcript_tensor)

Speech encoder NLP encoder decoder only fine-tune on layer norm and attention

model = SpeechMixEED("facebook/wav2vec2-base-960h", "facebook/bart-large", lna=True)

transcript_tensor = model.tokenizer(transcript, return_tensors="pt").input_ids
speech_tensor = model.processor(speech, return_tensors="pt").input_values

model(speech_tensor, transcript_tensor)

Speech encoder NLP encoder decoder only fine-tune on speech encoder

model = SpeechMixEED("facebook/wav2vec2-base-960h", "facebook/bart-large", fne=True)

transcript_tensor = model.tokenizer(transcript, return_tensors="pt").input_ids
speech_tensor = model.processor(speech, return_tensors="pt").input_values

model(speech_tensor, transcript_tensor)

Installation

pip install

pip install speechmix

Build from source

git clone and cd into this project.

pip install -e .

Example

usage:
python train.py --speech_model_config facebook/wav2vec2-large-robust-ft-libri-960h --nlp_model_config facebook/mbart-large-50-one-to-many-mmt --SpeechMixEED --lna --dataset librispeech_asr --field clean --train_split train.100 --test_split validation --batch 3 --grad_accum 8

python train.py --speech_model_config facebook/wav2vec2-large-robust-ft-libri-960h --nlp_model_config facebook/mbart-large-50-one-to-many-mmt --SpeechMixEED --fne --dataset librispeech_asr --field clean --train_split train.100 --test_split validation --batch 3 --grad_accum 8

python train.py --speech_model_config facebook/wav2vec2-large-robust-ft-libri-960h --nlp_model_config facebook/mbart-large-50-one-to-many-mmt --SpeechMixED --dataset librispeech_asr --field other --train_split train.500 --test_split validation --batch 3 --grad_accum 8

python train.py --speech_model_config facebook/wav2vec2-large-robust-ft-libri-960h --nlp_model_config facebook/mbart-large-50-one-to-many-mmt --SpeechMixED --ftl --dataset librispeech_asr --field other --train_split train.500 --test_split validation --batch 3 --grad_accum 8

python train.py --speech_model_config facebook/wav2vec2-large-robust-ft-libri-960h --nlp_model_config facebook/mbart-large-50-one-to-many-mmt --SpeechMixSelf --dataset librispeech_asr --field clean --train_split train.100 --test_split validation --batch 3 --grad_accum 10

python train.py --speech_model_config facebook/wav2vec2-large-robust-ft-libri-960h --nlp_model_config facebook/mbart-large-50-one-to-many-mmt --SpeechMixGAN --dataset librispeech_asr --field clean --train_split train.100 --test_split validation --batch 3 --grad_accum 10

python train.py --speech_model_config facebook/wav2vec2-large-robust-ft-libri-960h --nlp_model_config facebook/mbart-large-50-one-to-many-mmt --SpeechMixSelf --dataset common_voice --field en --train_split train --test_split test --batch 5 --grad_accum 8

python train.py --speech_model_config facebook/wav2vec2-large-robust-ft-libri-960h --nlp_model_config facebook/mbart-large-50-one-to-many-mmt --SpeechMixEED --lna --dataset patrickvonplaten/librispeech_asr_dummy --field clean --train_split validation --test_split test --batch 3 --grad_accum 4

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

speechmix-0.0.25.tar.gz (9.6 kB view details)

Uploaded Source

Built Distributions

speechmix-0.0.25-py3.7.egg (9.3 kB view details)

Uploaded Source

speechmix-0.0.25-py3-none-any.whl (4.9 kB view details)

Uploaded Python 3

File details

Details for the file speechmix-0.0.25.tar.gz.

File metadata

  • Download URL: speechmix-0.0.25.tar.gz
  • Upload date:
  • Size: 9.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.8

File hashes

Hashes for speechmix-0.0.25.tar.gz
Algorithm Hash digest
SHA256 c9960f20995cb0392dccd200a31ee96cb924810eeee4e553d48117b840e3621a
MD5 b5805d3275b335c1b5469bead2279b3c
BLAKE2b-256 80205f55c45f48d7e88460beead3c28bd7272de5d95b5c484f74279c39bc5c06

See more details on using hashes here.

File details

Details for the file speechmix-0.0.25-py3.7.egg.

File metadata

  • Download URL: speechmix-0.0.25-py3.7.egg
  • Upload date:
  • Size: 9.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.8

File hashes

Hashes for speechmix-0.0.25-py3.7.egg
Algorithm Hash digest
SHA256 5982ebe9bd5f23b2c887d79745df4fbb8e5fc17c21230d3ebfc78940a67d8664
MD5 67a9f6ba0765bc5ba02dc8abaa553879
BLAKE2b-256 08b1398e75c893a1f40a3a90055c3c30aa6b35929121d7a013f154c92b558c6b

See more details on using hashes here.

File details

Details for the file speechmix-0.0.25-py3-none-any.whl.

File metadata

  • Download URL: speechmix-0.0.25-py3-none-any.whl
  • Upload date:
  • Size: 4.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.8

File hashes

Hashes for speechmix-0.0.25-py3-none-any.whl
Algorithm Hash digest
SHA256 60717f0acd228569cf56bcb8b68876173241f815ec713f67205835bfb4b82b6f
MD5 d8f134cf279bb99eca0cec85d0d9492d
BLAKE2b-256 72977444b8b1d7a5552a2a202c9b9dd6a4f5a13266b21da69a985b6667b33e05

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page