Skip to main content

Accessing and processing data from the DFG-funded SPP Computational Literary Studies

Project description

Python code for working with the data of the DFG-funded SPP Computational Literary Studies.

  • sppcls.py: the sppcls Python module to access the data:

    from sppcls import sppcls
    df = sppcls.load_df(work="test", projects=["project"])
    print(df.describe())
    

    install it using pip install sppcls.

Installation

Setup an virtual environment, if necessary:

python3 -m venv env
source env/bin/activate

Install dependencies:

pip install -r requirements.txt
python -m spacy download de_core_news_lg

tokenise.py

Usage:

python tokenise.py path_to_input_txt path_to_output_tsv

TODO: fix character offset to be byte instead

check.py

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sppcls-0.0.4.tar.gz (6.4 kB view details)

Uploaded Source

Built Distribution

sppcls-0.0.4-py3-none-any.whl (7.9 kB view details)

Uploaded Python 3

File details

Details for the file sppcls-0.0.4.tar.gz.

File metadata

  • Download URL: sppcls-0.0.4.tar.gz
  • Upload date:
  • Size: 6.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.4.2 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.9.2

File hashes

Hashes for sppcls-0.0.4.tar.gz
Algorithm Hash digest
SHA256 6fb661b5e497e25f2ec5ff0fcb55168429a3110479f41bf3af7d33b8759725b2
MD5 397bd11cb2f02b9cc6aaaa512990ca74
BLAKE2b-256 a1cae2dd9ab3bfffb486c2a4d9709c3c4b7d0e01829ce2a6fdbc3e242142749b

See more details on using hashes here.

File details

Details for the file sppcls-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: sppcls-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 7.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.4.2 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.9.2

File hashes

Hashes for sppcls-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 844b24b3767b11fa3ee3dbbc13491940b5a3e1f4cf82362b5d136df7e54f8880
MD5 eebe860d681021794fbe8ef2cdac4033
BLAKE2b-256 acc8d1e3263956afa6a0c917a4cb2822839f3016d2ecfdbd455c054aaba96ee5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page