Skip to main content

A simple way to run SQL queries (SQLite3) on pandas.Dataframe objects.

Project description

SQLDF - Structured Query Language (SQL) on DataFrames (DF)

A simple way to run SQL (SQLite) queries on pandas.Dataframe objects.

How it works

  1. It create a virtual in-memory SQLite3 database at runtime
  2. It convert the pd.Dataframe input(s) to SQL table(s)
  3. It proceed the SQL query on the table(s)
  4. It convert back the SQL table(s) to updated pd.Dataframe(s) if required
  5. It returns the result of the query if required

Requirements

  • 'pandas>=1.0'

Installation

With pip (on pypi):

pip install sqldf

Examples of use

  • SELECT query with WHERE condition
# Import libraries
import pandas as pd
import numpy as np
from sqldf import run_query

# Create a dummy pd.Dataframe
df = pd.DataFrame({'col1': ['A', 'B', np.NaN, 'C', 'D'], 'col2': ['F', np.NaN, 'G', 'H', 'I']})

# Define a SQL (SQLite3) query
sql_query = """
SELECT *
FROM df
WHERE col_1 IS NOT NULL;
"""

# Run the query
df_view = run_query(sql_query)
  • UPDATE query that change inplace the value of a column
# Import libraries
import pandas as pd
from sqldf import run_query

# Create a dummy pd.Dataframe
url = ('https://raw.github.com/pandas-dev/pandas/master/pandas/tests/data/tips.csv')
tips = pd.read_csv(url)

# Define a SQL (SQLite3) query
sql_query = """
UPDATE tips
SET tip = tip*2
WHERE tip < 2;
"""

# Run the query
run_query(sql_query)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sqldf-0.3.2.tar.gz (3.9 kB view hashes)

Uploaded Source

Built Distribution

sqldf-0.3.2-py3-none-any.whl (4.0 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page