AWS System Manager Parameter Store caching client for Python
Project description
This module wraps the AWS Parameter Store and adds a caching layer with max-age invalidation.
You can use this module with AWS Lambda to read and refresh sensitive parameters. Your IAM role will require ssm:GetParameters permissions (optionally, also kms:Decrypt if you use SecureString params).
How to install
Install the module with pip:
pip install ssm-cache
How to use it
Simplest use case
A single parameter, configured by name.
from ssm_cache import SSMParameter
param = SSMParameter('my_param_name')
value = param.value()
With cache invalidation
You can configure the max_age in seconds, after which the values will be automatically refreshed.
from ssm_cache import SSMParameter
param = SSMParameter('my_param_name', max_age=300) # 5 min
value = param.value()
With multiple parameters
You can configure more than one parameter to be fetched/cached together.
from ssm_cache import SSMParameter
params = SSMParameter(['param_1', 'param_2'])
value_1, value_2 = params.values()
# or individually
value_1 = params.value('param_1')
Explicit refresh
You can manually force a refresh for all the configured parameters.
from ssm_cache import SSMParameter
param = SSMParameter('my_param_name')
value = param.value()
param.refresh()
new_value = param.value()
Multiple cache behaviors
If you need different cache behaviour for each parameter, you can simply create more than one SSMParameter object.
from ssm_cache import SSMParameter
param_1 = SSMParameter('param_1', max_age=300) # 5 min
param_2 = SSMParameter('param_2', max_age=3600) # 1 hour
value_1 = param_1.value()
value_2 = param_2.value()
Without decryption
Decryption is enabled by default, but you can explicitly disable it.
from ssm_cache import SSMParameter
param = SSMParameter('my_param_name', with_decryption=False)
value = param.value()
Usage with AWS Lambda
Your AWS Lambda code will look similar to the following snippet.
from ssm_cache import SSMParameter
param = SSMParameter('my_param_name')
def lambda_handler(event, context):
secret_value = param.value()
return 'Hello from Lambda with secret %s' % secret_value
Complex invalidation based on “signals”
You may want to explicitly refresh the parameter cache when you believe the cached value expired.
In the example below, we refresh the parameter value when an InvalidCredentials exception is detected (see the decorator utility for a simpler version!).
from ssm_cache import SSMParameter
from my_db_lib import Client, InvalidCredentials # pseudo-code
param = SSMParameter('my_db_password')
my_db_client = Client(password=param.value())
def read_record(is_retry=False):
try:
return my_db_client.read_record()
except InvalidCredentials:
if not is_retry: # avoid infinite recursion
param.refresh() # force parameter refresh
my_db_client = Client(password=param.value()) # re-configure db client
return read_record(is_retry=True) # let's try again :)
def lambda_handler(event, context):
return {
'record': read_record(),
}
Decorator utility
The retry logic shown above can be simplified with the decorator method provided by each SSMParameter object.
The @param.refresh_on_error decorator will intercept errors (or a specific error_class, if given), refresh the parameters values, and attempt to re-call the decorated function. Optionally, you can provide a callback argument to implement your own logic (in the example below, to create a new db client with the new password).
from ssm_cache import SSMParameter
from my_db_lib import Client, InvalidCredentials # pseudo-code
param = SSMParameter('my_db_password')
my_db_client = Client(password=param.value())
def on_error_callback():
my_db_client = Client(password=param.value())
@param.refresh_on_error(InvalidCredentials, on_error_callback)
def read_record(is_retry=False):
return my_db_client.read_record()
def lambda_handler(event, context):
return {
'record': read_record(),
}
How to contribute
Clone this repository, create a virtualenv and install all the dev dependencies:
git clone https://github.com/alexcasalboni/ssm-cache-python.git
cd ssm-cache-python
virtualenv env
source env/bin/activate
pip install -r requirements-dev.txt
You can run tests with nose:
nosetests
Generate a coverage report:
nosetests --with-coverage --cover-erase --cover-html --cover-package=ssm_cache
open cover/index.html
Run pylint:
pylint ssm_cache
References and articles
You should use SSM Parameter Store over Lambda env variables by Yan Cui (similar Node.js implementation)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.