This package provides user-friendly functions to easily navigate stock information of the companies of their interests. The output results include visualization of closing prices and daily returns, stock prediction for the next twenty days, as well as the company information with sectors and PE ratios.
Project description
Stock_Info_Easy
This Python package is an implementation of the existing yfinance wrapper, one of the widely used yahoo finance API wrappers.
One drawback of the existing yahoo finance API wrapper is its inability to fetch stock data using the company name; it can only fetch the data with company symbol registered on the Yahoo Finance.
To improve the functionality of the previous wrapper, this package enables a user to query a company with its full name.
By simply typing a company name, this pacakage will generate today's stock information for the company of interest.
The fetched data includes:
- company name, open, high, low, close (closing price), adj close, volume, daily return, and PE ratios.
The stock information will be provided in dynamic formats with the use of visualizations, a data table, a stock forecast and an audio file.
Installation
$ pip install stock_info_easy
Usage
# Insert the name(s) of company(ies) ex) ['amazon', 'apple', 'google', 'microsoft']
>>> data_list, comp_names_abbr, company_list, comp_names = stock_info_easy.get_hist_data(('amazon', 'apple', 'google', 'microsoft'))
# Output
>>> [ Open High Low Close Adj Close Volume company_name company_fullname
2022-01-04 170.438004 171.399994 166.349503 167.522003 167.522003 70726000 amazon AMAZON
2022-01-05 166.882996 167.126495 164.356995 164.356995 164.356995 64302000 amazon AMAZON
2022-01-06 163.450500 164.800003 161.936996 163.253998 163.253998 51958000 amazon AMAZON
2022-01-07 163.839005 165.243500 162.031006 162.554001 162.554001 46606000 amazon AMAZON
2022-01-10 160.585495 161.661499 156.304504 161.485992 161.485992 87798000 amazon AMAZON
[5 rows x 8 columns],
Open High Low Close Adj Close Volume company_name company_fullname
2022-01-04 182.630005 182.940002 179.119995 179.699997 178.663086 99310400 apple APPLE
2022-01-05 179.610001 180.169998 174.639999 174.919998 173.910645 94537600 apple APPLE
2022-01-06 172.699997 175.300003 171.639999 172.000000 171.007523 96904000 apple APPLE
2022-01-07 172.889999 174.139999 171.029999 172.169998 171.176529 86709100 apple APPLE
2022-01-10 169.080002 172.500000 168.169998 172.190002 171.196426 106765600 apple APPLE
[5 rows x 8 columns],
Open High Low Close Adj Close Volume company_name company_fullname
2022-01-04 145.550507 146.610001 143.816147 144.416504 144.416504 22928000 google GOOGLE
2022-01-05 144.181000 144.298004 137.523499 137.653503 137.653503 49642000 google GOOGLE
2022-01-06 137.497498 139.686005 136.763504 137.550995 137.550995 29050000 google GOOGLE
2022-01-07 137.904999 138.254745 135.789001 137.004501 137.004501 19408000 google GOOGLE
2022-01-10 135.098999 138.639999 133.140503 138.574005 138.574005 34096000 google GOOGLE
[5 rows x 8 columns],
Open High Low Close Adj Close Volume company_name company_fullname
2022-01-04 334.829987 335.200012 326.119995 329.010010 325.955750 32674300 microsoft MICROSOFT
2022-01-05 325.859985 326.070007 315.980011 316.380005 313.442993 40054300 microsoft MICROSOFT
2022-01-06 313.149994 318.700012 311.489990 313.880005 310.966187 39646100 microsoft MICROSOFT
2022-01-07 314.149994 316.500000 310.089996 314.040009 311.124725 32720000 microsoft MICROSOFT
2022-01-10 309.489990 314.720001 304.690002 314.269989 311.352570 44289500 microsoft MICROSOFT
[5 rows x 8 columns]]
# To view the stock data as a table, type `data_list` or `company_list[i]`, i = index of the company.
>>> company_list[0] # first company (amazon) info
2. Visualization of Closing Price
# To generate a visualization of closing price, copy-paste below function as it is.
>>> get_closing_price_viz(company_list, comp_names)
3. Visualization of Daily Return
# To generate a visualization of Daily Return, copy-paste below function as it is.
>>> get_daily_return_viz(company_list, company_names)
4. Audio file on Stock Info
This package provides key stock information such as PE ratio and basic company information of all queries companies in an audio format.
>>> generate_audio(comp_names_abbr, audio_filename='default1.mp3') # insert a filename in audio_filename
5. Prediction on Closing Price
This package uses the time series LSTM vanila model to predict the closing price. LSTM model is built with two hidden LSTM layers followed by a standard feedforward output layer.
# Write following functions
create_pricelist(close_prices, windown_size = 30)
predict_rolling_price(result_list, model, window_size = 30, predict_window_size = 10)
train_model(stock, comp_name, windown_size=30, predict_window_size=10)
Contributing
Interested in contributing? Check out the contributing guidelines. Please note that this project is released with a Code of Conduct. By contributing to this project, you agree to abide by its terms.
License
stock_info_easy
was created by Shauna Han. It is licensed under the terms of the MIT license.
Credits
stock_info_easy
was created with cookiecutter
and the py-pkgs-cookiecutter
template.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file stock_info_easy-1.2.2.tar.gz
.
File metadata
- Download URL: stock_info_easy-1.2.2.tar.gz
- Upload date:
- Size: 12.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.2.0 CPython/3.10.6 Darwin/21.4.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0eaa55b9934aad2055e14df836e96d00aa584fb292a0436aa8ca3a581327355c |
|
MD5 | e90c7e966d8ca827db4ae3b10ae5f53c |
|
BLAKE2b-256 | 64b50b2982992a7f46737c88d253efba63c44256ee00560f091d7388fcbd98c3 |
File details
Details for the file stock_info_easy-1.2.2-py3-none-any.whl
.
File metadata
- Download URL: stock_info_easy-1.2.2-py3-none-any.whl
- Upload date:
- Size: 11.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.2.0 CPython/3.10.6 Darwin/21.4.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 970a09e004ea84793129babdf953abb4c506ac19051d9acdae9f4fc258f341d6 |
|
MD5 | 06b634860723427bafcaf776fc3daee2 |
|
BLAKE2b-256 | 3921edcdf99fb3771197422e895a5eca3083db628e94531ade8b62030ca6a44d |