The wrapper of `pandas.DataFrame` with stock statistics and indicators support.
Project description
stock-pandas
stock-pandas inherits and extends pandas.DataFrame
to support:
- Stock Statistics
- Stock Indicators, including:
- Trend-following momentum indicators, such as MA, EMA, MACD, BBI
- Dynamic support and resistance indicators, such as BOLL
- Over-bought / over-sold indicators, such as KDJ, RSI
- Other indicators, such as LLV, HHV
- For more indicators, welcome to request a proposal, or fork and send me a pull request, or extend stock-pandas yourself. You might read the Advanced Sections below.
- To cumulate kline data based on a given time frame, so that it could easily handle real-time data updates.
stock-pandas
makes automatical trading much easier. stock-pandas
requires Python >= 3.6 and Pandas >= 1.0.0(for now)
With the help of stock-pandas
and mplfinance, we could easily draw something like:
The code example is available at here.
Install
For now, before installing stock-pandas
in your environment
Have g++
compiler installed
# With yum, for CentOS, Amazon Linux, etc
yum install gcc-c++
# With apt-get, for Ubuntu
apt-get install g++
# For macOS, install XCode commandline tools
xcode-select --install
If you use docker with Dockerfile
and use python image,
FROM python:3.8
...
The default python:3.8
image already contains g++, so we do not install g++ additionally.
Install stock-pandas
# Installing `stock-pandas` requires `numpy` to be installed first
pip install numpy
pip install stock-pandas
Usage
from stock_pandas import StockDataFrame
# or
import stock_pandas as spd
We also have some examples with annotations in the example
directory, you could use JupyterLab or Jupyter notebook to play with them.
StockDataFrame
StockDataFrame
inherits from pandas.DataFrame
, so if you are familiar with pandas.DataFrame
, you are already ready to use stock-pandas
import pandas as pd
stock = StockDataFrame(pd.read_csv('stock.csv'))
As we know, we could use []
, which called pandas indexing (a.k.a. __getitem__
in python) to select out lower-dimensional slices. In addition to indexing with colname
(column name of the DataFrame
), we could also do indexing by directive
s.
stock[directive] # Gets a pandas.Series
stock[[directive0, directive1]] # Gets a StockDataFrame
We have an example to show the most basic indexing using [directive]
stock = StockDataFrame({
'open' : ...,
'high' : ...,
'low' : ...,
'close': [5, 6, 7, 8, 9]
})
stock['ma:2']
# 0 NaN
# 1 5.5
# 2 6.5
# 3 7.5
# 4 8.5
# Name: ma:2,close, dtype: float64
Which prints the 2-period simple moving average on column "close"
.
Parameters
- date_col
Optional[str] = None
If set, then the column nameddate_col
will convert and set asDateTimeIndex
of the data frame - to_datetime_kwargs
dict = {}
the keyworded arguments to be passed topandas.to_datetime()
. It only takes effect ifdate_col
is specified. - time_frame
str | TimeFrame | None = None
time frame of the stock. For now, only the following time frames are supported:'1m'
orTimeFrame.M1
'3m'
orTimeFrame.M3
'5m'
orTimeFrame.M5
'15m'
orTimeFrame.M15
'30m'
orTimeFrame.M30
'1h'
orTimeFrame.H1
'2h'
orTimeFrame.H2
'4h'
orTimeFrame.H4
'6h'
orTimeFrame.H6
'8h'
orTimeFrame.H8
'12h'
orTimeFrame.H12
stock.exec(directive: str, create_column: bool=False) -> np.ndarray
Executes the given directive and returns a numpy ndarray according to the directive.
stock['ma:5'] # returns a Series
stock.exec('ma:5', create_column=True) # returns a numpy ndarray
# This will only calculate without creating a new column in the dataframe
stock.exec('ma:20')
The difference between stock[directive]
and stock.exec(directive)
is that
- the former will create a new column for the result of
directive
as a cache for later use, whilestock.exec(directive)
does not unless we pass the parametercreate_column
asTrue
- the former one accepts other pandas indexing targets, while
stock.exec(directive)
only accepts a valid stock-pandas directive string - the former one returns a
pandas.Series
orStockDataFrame
object while the latter one returns annp.ndarray
stock.alias(alias: str, name: str) -> None
Defines column alias or directive alias
- alias
str
the alias name - name
str
the name of an existing column or the directive string
# Some plot library such as `mplfinance` requires a column named capitalized `Open`,
# but it is ok, we could create an alias.
stock.alias('Open', 'open')
stock.alias('buy_point', 'kdj.j < 0')
stock.get_column(key: str) -> pd.Series
Directly gets the column value by key
, returns a pandas Series
.
If the given key
is an alias name, it will return the value of corresponding original column.
If the column is not found, a KeyError
will be raised.
stock = StockDataFrame({
'open' : ...,
'high' : ...,
'low' : ...,
'close': [5, 6, 7, 8, 9]
})
stock.get_column('close')
# 0 5
# 1 6
# 2 7
# 3 8
# 4 9
# Name: close, dtype: float64
try:
stock.get_column('Close')
except KeyError as e:
print(e)
# KeyError: column "Close" not found
stock.alias('Close', 'close')
stock.get_column('Close')
# The same as `stock.get_column('close')`
stock.append(other, *args, **kwargs) -> StockDataFrame
Appends rows of other
to the end of caller, returning a new object.
This method has nearly the same hehavior of pandas.DataFrame.append()
, but instead it returns an instance of StockDataFrame
, and it applies date_col
to the newly-appended row(s) if possible.
stock.directive_stringify(directive: str) -> str
Since 0.26.0
Gets the full name of the directive
which is also the actual column name of the data frame
stock.directive_stringify('kdj.j')
# "kdj.j:9,3,3,50.0"
And also
from stock_pandas import
directive_stringify('kdj.j')
# "kdj.j:9,3,3,50.0"
Actually, directive_stringify
does not rely on StockDataFrame instances.
stock.rolling_calc(size, on, apply, forward, fill) -> np.ndarray
Since 0.27.0
Applies a 1-D function along the given column or directive on
- size
int
the size of the rolling window - on
str | Directive
along which the function should be applied - apply
Callable[[np.ndarray], Any]
the 1-D function to apply - forward?
bool = False
whether we should look backward (default value) to get each rolling window or not - fill?
Any = np.nan
the value used to fill where there are not enough items to form a rolling window
stock.rolling_calc(5, 'open', max)
# Whose return value equals to
stock['hhv:5,open'].to_numpy()
stock.cumulate() -> StockDataFrame
Cumulate the current data frame stock
based on its time frame setting
StockDataFrame(one_minute_kline_data_frame, time_frame='5m').cumulate()
# And you will get a 5-minute kline data
see Cumulation and DatetimeIndex for details
stock.cum_append(other: DataFrame) -> StockDataFrame
Append other
to the end of the current data frame stock
and apply cumulation on them. And the following slice of code is equivalent to the above one:
StockDataFrame(time_frame='5m').cum_append(one_minute_kline_data_frame)
see Cumulation and DatetimeIndex for details
directive_stringify(directive_str) -> str
since 0.30.0
Similar to stock.directive_stringify()
but could be called without class initialization
from stock_pandas import directive_stringify
directive_stringify('boll')
# boll:21,close
Cumulation and DatetimeIndex
Suppose we have a csv file containing kline data of a stock in 1-minute time frame
csv = pd.read_csv(csv_path)
print(csv)
date open high low close volume
0 2020-01-01 00:00:00 329.4 331.6 327.6 328.8 14202519
1 2020-01-01 00:01:00 330.0 332.0 328.0 331.0 13953191
2 2020-01-01 00:02:00 332.8 332.8 328.4 331.0 10339120
3 2020-01-01 00:03:00 332.0 334.2 330.2 331.0 9904468
4 2020-01-01 00:04:00 329.6 330.2 324.9 324.9 13947162
5 2020-01-01 00:04:00 329.6 330.2 324.8 324.8 13947163 <- There is an update of
2020-01-01 00:04:00
...
16 2020-01-01 00:16:00 333.2 334.8 331.2 334.0 12428539
17 2020-01-01 00:17:00 333.0 333.6 326.8 333.6 15533405
18 2020-01-01 00:18:00 335.0 335.2 326.2 327.2 16655874
19 2020-01-01 00:19:00 327.0 327.2 322.0 323.0 15086985
Noted that duplicated records of a same timestamp will not be cumulated. The records except the latest one will be disgarded.
stock = StockDataFrame(
csv,
date_col='date',
# Which is equivalent to `time_frame=TimeFrame.M5`
time_frame='5m'
)
print(stock)
open high low close volume
2020-01-01 00:00:00 329.4 331.6 327.6 328.8 14202519
2020-01-01 00:01:00 330.0 332.0 328.0 331.0 13953191
2020-01-01 00:02:00 332.8 332.8 328.4 331.0 10339120
2020-01-01 00:03:00 332.0 334.2 330.2 331.0 9904468
2020-01-01 00:04:00 329.6 330.2 324.9 324.9 13947162
2020-01-01 00:04:00 329.6 330.2 324.8 324.8 13947162
...
2020-01-01 00:16:00 333.2 334.8 331.2 334.0 12428539
2020-01-01 00:17:00 333.0 333.6 326.8 333.6 15533405
2020-01-01 00:18:00 335.0 335.2 326.2 327.2 16655874
2020-01-01 00:19:00 327.0 327.2 322.0 323.0 15086985
You must have figured it out that the data frame now has DatetimeIndex
es.
But it will not become a 15-minute kline data unless we cumulate it, and only cumulates new frames if you use stock.cum_append(them)
to cumulate them
.
stock_15m = stock.cumulate()
print(stock_15m)
Now we get a 15-minute kline
open high low close volume
2020-01-01 00:00:00 329.4 334.2 324.8 324.8 62346461.0
2020-01-01 00:05:00 325.0 327.8 316.2 322.0 82176419.0
2020-01-01 00:10:00 323.0 327.8 314.6 327.6 74409815.0
2020-01-01 00:15:00 330.0 335.2 322.0 323.0 82452902.0
For more details and about how to get full control of everything, check the online Google Colab notebook here.
Syntax of directive
directive := command | command operator expression
operator := '/' | '\' | '><' | '<' | '<=' | '==' | '>=' | '>'
expression := float | command
command := command_name | command_name : arguments
command_name := main_command_name | main_command_name.sub_command_name
main_command_name := alphabets
sub_command_name := alphabets
arguments := argument | argument , arguments
argument := empty_string | string | ( directive )
directive
Example
Here lists several use cases of column names
# The middle band of bollinger bands
# which is actually a 20-period (default) moving average
stock['boll']
# kdj j less than 0
# This returns a series of bool type
stock['kdj.j < 0']
# kdj %K cross up kdj %D
stock['kdj.k / kdj.d']
# 5-period simple moving average
stock['ma:5']
# 10-period simple moving average on open prices
stock['ma:10,open']
# Dataframe of 5-period, 10-period, 30-period ma
stock[[
'ma:5',
'ma:10',
'ma:30'
]]
# Which means we use the default values of the first and the second parameters,
# and specify the third parameter
stock['macd:,,10']
# We must wrap a parameter which is a nested command or directive
stock['increase:(ma:20,close),3']
# stock-pandas has a powerful directive parser,
# so we could even write directives like this:
stock['''
repeat
:
(
column:close > boll.upper
),
5
''']
Built-in Commands of Indicators
Document syntax explanation:
- param0
int
which meansparam0
is a required parameter of typeint
. - param1?
str='close'
which means parameterparam1
is optional with default value'close'
.
Actually, all parameters of a command are of string type, so the int
here means an interger-like string.
ma
, simple Moving Averages
ma:<period>,<column>
Gets the period
-period simple moving average on column named column
.
SMA
is often confused between simple moving average and smoothed moving average.
So stock-pandas
will use ma
for simple moving average and smma
for smoothed moving average.
- period
int
(required) - column?
enum<'open'|'high'|'low'|'close'>='close'
Which column should the calculation based on. Defaults to'close'
# which is equivalent to `stock['ma:5,close']`
stock['ma:5']
stock['ma:10,open']
ema
, Exponential Moving Average
ema:<period>,<column>
Gets the Exponential Moving Average, also known as the Exponential Weighted Moving Average.
The arguments of this command is the same as ma
.
macd
, Moving Average Convergence Divergence
macd:<fast_period>,<slow_period>
macd.signal:<fast_period>,<slow_period>,<signal_period>
macd.histogram:<fast_period>,<slow_period>,<signal_period>
- fast_period?
int=12
fast period (short period). Defaults to12
. - slow_period?
int=26
slow period (long period). Defaults to26
- signal_period?
int=9
signal period. Defaults to9
# macd
stock['macd']
stock['macd.dif']
# macd signal band, which is a shortcut for stock['macd.signal']
stock['macd.s']
stock['macd.signal']
stock['macd.dea']
# macd histogram band, which is equivalent to stock['macd.h']
stock['macd.histogram']
stock['macd.h']
stock['macd.macd']
boll
, BOLLinger bands
boll:<period>,<column>
boll.upper:<period>,<times>,<column>
boll.lower:<period>,<times>,<column>
- period?
int=20
- times?
float=2.
- column?
str='close'
# boll
stock['boll']
# bollinger upper band, a shortcut for stock['boll.upper']
stock['boll.u']
stock['boll.upper']
# bollinger lower band, which is equivalent to stock['boll.l']
stock['boll.lower']
stock['boll.l']
rsv
, Raw Stochastic Value
rsv:<period>
Calculates the raw stochastic value which is often used to calculate KDJ
kdj
, a variety of stochastic oscillator
The variety of Stochastic Oscillator indicator created by Dr. George Lane, which follows the formula:
RSV = rsv(period_rsv)
%K = ema(RSV, period_k)
%D = ema(%K, period_d)
%J = 3 * %K - 2 * %D
And the ema
here is the exponential weighted moving average with initial value as init_value
.
PAY ATTENTION that the calculation forumla is different from wikipedia, but it is much popular and more widely used by the industry.
Directive Arguments:
kdj.k:<period_rsv>,<period_k>,<init_value>
kdj.d:<period_rsv>,<period_k>,<period_d>,<init_value>
kdj.j:<period_rsv>,<period_k>,<period_d>,<init_value>
- period_rsv?
int=9
The period for calculating RSV, which is used for K% - period_k?
int=3
The period for calculating the EMA of RSV, which is used for K% - period_d?
int=3
The period for calculating the EMA of K%, which is used for D% - init_value?
float=50.0
The initial value for calculating ema. Trading softwares of different companies usually use different initial values each of which is usually0.0
,50.0
or100.0
.
# The %D series of KDJ
stock['kdj.d']
# which is equivalent to
stock['kdj.d:9,3,3,50.0']
# The KDJ serieses of with parameters 9, 9, and 9
stock[['kdj.k:9,9', 'kdj.d:9,9,9', 'kdj.j:9,9,9']]
kdjc
, another variety of stochastic oscillator
Unlike kdj
, kdjc
uses close value instead of high and low value to calculate rsv
, which makes the indicator more sensitive than kdj
The arguments of kdjc
are the same as kdj
rsi
, Relative Strength Index
rsi:<period>
Calculates the N-period RSI (Relative Strength Index)
- period
int
The period to calculate RSI.period
should be an int which is larger than1
bbi
, Bull and Bear Index
bbi:<a>,<b>,<c>,<d>
Calculates indicator BBI (Bull and Bear Index) which is the average of ma:3
, ma:6
, ma:12
, ma:24
by default
- a?
int=3
- b?
int=6
- c?
int=12
- d?
int=24
llv
, Lowest of Low Values
llv:<period>,<column>
Gets the lowest of low prices in N periods
- period
int
- column?
str='low'
Defaults to'low'
. But you could also get the lowest value of close prices
# The 10-period lowest prices
stock['llv:10']
# The 10-period lowest close prices
stock['llv:10,close']
hhv
, Highest of High Values
hhv:<period>,<column>
Gets the highest of high prices in N periods. The arguments of hhv
is the same as llv
Built-in Commands for Statistics
column
column:<name>
Just gets the series of a column. This command is designed to be used together with an operator to compare with another command or as a parameter of some statistics command.
- name
str
the name of the column
# A bool-type series indicates whether the current price is higher than the upper bollinger band
stock['column:close > boll.upper']
increase
increase:<on>,<repeat>,<step>
Gets a bool
-type series each item of which is True
if the value of indicator on
increases in the last period
-period.
- on
str
the command name of an indicator on what the calculation should be based - repeat?
int=1
- direction?
1 | -1
the direction of "increase".-1
means decreasing
For example:
# Which means whether the `ma:20,close` line
# (a.k.a. 20-period simple moving average on column `'close'`)
# has been increasing repeatedly for 3 times (maybe 3 days)
stock['increase:(ma:20,close),3']
# If the close price has been decreasing repeatedly for 5 times (maybe 5 days)
stock['increase:close,5,-1']
style
style:<style>
Gets a bool
-type series whether the candlestick of a period is of style
style
- style
'bullish' | 'bearish'
stock['style:bullish']
repeat
repeat:(<bool_directive>),<repeat>
The repeat
command first gets the result of directive bool_directive
, and detect whether True
is repeated for repeat
times
- bool_directive
str
the directive which should returns a series ofbool
s. PAY ATTENTION, that the directive should be wrapped with parantheses as a parameter. - repeat?
int=1
which should be larger than0
# Whether the bullish candlestick repeats for 3 periods (maybe 3 days)
stock['repeat:(style:bullish),3']
change
change:<on>,<period>
Percentage change between the current and a prior element on a certain series
Computes the percentage change from the immediately previous element by default. This is useful in comparing the percentage of change in a time series of prices.
- on
str
the directive which returns a series of numbers, and the calculation will based on the series. - period?
int=2
2
means we computes with the start value and the end value of a 2-period window.
# Percentage change of 20-period simple moving average
stock['change:(ma:20)']
Operators
left operator right
Operator: /
whether left
crosses through right
from the down side of right
to the upper side which we call it as "cross up".
Operator: \
whether left
crosses down right
.
# Which we call them "dead crosses"
stock['macd \\ macd.signal']
PAY ATTENTION, in the example above, we should escape the backslash, so we've got double backslashes '\\'
Operator: ><
whether left
crosses right
, either up or down.
Operator: <
| <=
| ==
| >=
| >
For a certain record of the same time, whether the value of left
is less than / less than or equal to / equal to / larger than or equal to / larger than the value of right
.
Errors
from stock_pandas import (
DirectiveSyntaxError,
DirectiveValueError
)
DirectiveSyntaxError
Raises if there is a syntax error in the given directive.
stock['''
repeat
:
(
column:close >> boll.upper
),
5
''']
DirectiveSyntaxError
might print some messages like this:
File "<string>", line 5, column 26
repeat
:
(
> column:close >> boll.upper
),
5
^
DirectiveSyntaxError: ">>" is an invalid operator
DirectiveValueError
Raises if
- there is an unknown command name
- something is wrong about the command arguments
- etc.
Advanced Sections
How to extend stock-pandas and support more indicators,
This section is only recommended for contributors, but not for normal users, for that the definition of
COMMANDS
might change in the future.
from stock_pandas import COMMANDS, CommandPreset
To add a new indicator to stock-pandas, you could update the COMMANDS
dict.
# The value of 'new-indicator' is a tuple
COMMANDS['new-indicator'] = (
# The first item of the tuple is a CommandPreset instance
CommandPreset(
formula,
args_setting
),
sub_commands_dict,
aliases_of_sub_commands
)
You could check here to figure out the typings for COMMANDS
.
For a simplest indicator, such as simple moving average, you could check the implementation here.
formula(df, s, *args) -> Tuple[np.ndarray, int]
formula
is a Callable[[StockDataFrame, slice, ...], [ndarray, int]]
.
- df
StockDataFrame
the first argument offormula
is the stock dataframe itself - s
slice
sometimes, we don't need to calculate the whole dataframe but only part of it. This argument is passed into the formula bystock_pandas
and should not be changed manually. - args
Tuple[Any]
the args of the indicator which is defined byargs_setting
The Callable returns a tuple:
- The first item of the tuple is the calculated result which is a numpy ndarray.
- The second item of the tuple is the mininum periods to calculate the indicator.
args_setting: [(default, validate_and_coerce), ...]
args_setting
is a list of tuples.
-
The first item of each tuple is the default value of the parameter, and it could be
None
which implies it has no default value and is required. -
The second item is a raisable callable which receives user input, validates it, coerces the type of the value and returns it. If the parameter has a default value and user don't specified a value, the function will be skipped.
sub_commands_dict: Dict[str, CommandPreset]
A dict to declare sub commands, such as boll.upper
.
sub_commands_dict
could be None
which indicates the indicator has no sub commands
aliases_of_sub_commands: Dict[str, Optional[str]]
Which declares the shortcut or alias of the commands, such as boll.u
dict(
u='upper'
)
If the value of an alias is None
, which means it is an alias of the main command, such as macd.dif
dict(
dif=None
)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for stock_pandas-1.1.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2c9195f576e7f7f1a4501c0e08ffdca0ee34c0cb8fc035dd1a70fb2f6d3f7968 |
|
MD5 | 05114060b55a91f8131f8511f0237586 |
|
BLAKE2b-256 | 96ac1b0ab6b7c8201c92b94d1e84a5d20c35828945957c83549fe13089f834cc |