Skip to main content

Async flows

Project description

Storey

CI

Storey is an asynchronous streaming library, for real time event processing and feature extraction.

In This Document

▶ For more information, see the Storey Python package documentation.

API Walkthrough

A Storey flow consist of steps linked together by the build_flow function, each doing it's designated work.

Supported Steps

Input Steps

  • Source
  • AsyncSource
  • ReadCSV
  • ReadParquet
  • DataframeSource

Processing Steps

  • Filter
  • Map
  • FlatMap
  • MapWithState
  • Batch(max_events, timeout) - Batches events. This step emits a batch every max_events events, or when timeout seconds have passed since the first event in the batch was received.
  • Choice
  • JoinWithV3IOTable
  • SendToHttp
  • AggregateByKey(aggregations,cache, key=None, emit_policy=EmitEveryEvent(), augmentation_fn=None) - This step aggregates the data into the cache object provided for later persistence, and outputs an event enriched with the requested aggregation features.
  • QueryByKey(features, cache, key=None, augmentation_fn=None, aliases=None) - Similar to to AggregateByKey, but this step is for serving only and does not aggregate the event.
  • WriteToTable(table) - Persists the data in table to its associated storage by key.
  • Extend
  • JoinWithTable

Output Steps

  • Complete
  • Reduce
  • WriteToV3IOStream
  • WriteToCSV
  • ReduceToDataFrame
  • WriteToTSDB
  • WriteToParquet

Usage Examples

Using Aggregates

The following example reads user data, creates features using Storey's aggregates, persists the data to V3IO and emits events containing the features to a V3IO Stream for further processing.

from storey import build_flow, Source, Table, V3ioDriver, AggregateByKey, FieldAggregator, WriteToTable
from storey.dtypes import SlidingWindows

v3io_web_api = 'https://webapi.change-me.com'
v3io_acceess_key = '1284ne83-i262-46m6-9a23-810n41f169ea'
table_object = Table('/projects/my_features', V3ioDriver(v3io_web_api, v3io_acceess_key))

def enrich(event, state):
    if 'first_activity' not in state:
        state['first_activity'] = event.time
    event.body['time_since_activity'] = (event.time - state['first_activity']).seconds
    state['last_event'] = event.time
    event.body['total_activities'] = state['total_activities'] = state.get('total_activities', 0) + 1
    return event, state

controller = build_flow([
    Source(),
    MapWithState(table_object, enrich, group_by_key=True, full_event=True),
    AggregateByKey([FieldAggregator("number_of_clicks", "click", ["count"],
                                    SlidingWindows(['1h','2h', '24h'], '10m')),
                    FieldAggregator("purchases", "purchase_amount", ["avg", "min", "max"],
                                    SlidingWindows(['1h','2h', '24h'], '10m')),
                    FieldAggregator("failed_activities", "activity", ["count"],
                                    SlidingWindows(['1h'], '10m'),
                                    aggr_filter=lambda element: element['activity_status'] == 'fail'))],
                   table_object),
    WriteToTable(table_object),
    WriteToV3IOStream(V3ioDriver(v3io_web_api, v3io_acceess_key), 'features_stream')
]).run()

We can also create a serving function, which sole purpose is to read data from the feature store and emit it further

controller = build_flow([
    Source(),
    QueryAggregationByKey([FieldAggregator("number_of_clicks", "click", ["count"],
                                           SlidingWindows(['1h','2h', '24h'], '10m')),
                           FieldAggregator("purchases", "purchase_amount", ["avg", "min", "max"],
                                           SlidingWindows(['1h','2h', '24h'], '10m')),
                           FieldAggregator("failed_activities", "activity", ["count"],
                                           SlidingWindows(['1h'], '10m'),
                                           aggr_filter=lambda element: element['activity_status'] == 'fail'))],
                           table_object)
]).run()

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

storey-0.3.6.tar.gz (81.5 kB view details)

Uploaded Source

Built Distribution

storey-0.3.6-py3-none-any.whl (91.1 kB view details)

Uploaded Python 3

File details

Details for the file storey-0.3.6.tar.gz.

File metadata

  • Download URL: storey-0.3.6.tar.gz
  • Upload date:
  • Size: 81.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for storey-0.3.6.tar.gz
Algorithm Hash digest
SHA256 6d4f24381bdcd9951323e1eb910c307ab72581adddf0e720a5ba6f31e29230b3
MD5 ec0f76035b422ffba4dd1cb0f6da0061
BLAKE2b-256 8d7f9564a4f5c4f58bb06cb5f2818b4f48fbd70b7216dcfe59009b532c1dde70

See more details on using hashes here.

File details

Details for the file storey-0.3.6-py3-none-any.whl.

File metadata

  • Download URL: storey-0.3.6-py3-none-any.whl
  • Upload date:
  • Size: 91.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for storey-0.3.6-py3-none-any.whl
Algorithm Hash digest
SHA256 f3b984ed770a247f11e18db31edc5fde51dfb18706f7cb1985a1ac832df93acd
MD5 e7351cd1a4d322f354e4e92bb1f2c5dc
BLAKE2b-256 67010258792ec25a7b33d57f894054758b5918731c9674d3f3fb52f8e19c7289

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page