Skip to main content

"Strands - Standing waves approximations for the n-dimensional Schrödinger problem (with n = 2)."

Project description

Strands

Standing waves approximations for the n-dimensional Schrödinger problem (with n = 2).

Strands is a library to compute eigenvalues of two-dimensional time-independent Schrödinger equations. $$ -\nabla \psi(x, y) + V(x, y) \psi(x, y) = E \psi(x, y) $$ The library is written in C++ with Python-bindings.

Installation

Installing it is as simple as

pip install strands

Examples

Harmonic oscillator on a circular domain

Consider the harmonic oscillator potential $$ V(x, y) = x^2 + y^2 $$ on the circular domain around zero with radius $9.5$.

from strands import Schrodinger2D , Circle

def V(x, y):
    return x * x + y * y

schrodinger = Schrodinger2D(V, Circle ((0, 0), 9.5), gridSize=(40, 40), maxBasisSize=30)
print(schrodinger.eigenvalues(10))

The values gridSize and maxBasisSize determine how accurate the used method has to be. Eigenfunctions can be computed with:

import matplotlib.pyplot as plt
import numpy as np

xs = np.linspace(-4, 4, 100)
ys = np.linspace(-4, 4, 100)
X, Y = np.meshgrid(xs, ys)

for E, f in schrodinger.eigenfunctions(3):
    plt.pcolormesh(X, Y, f(X, Y))
    plt.show ()

Development

This is developed in C++ with CMake. To get started, make a recursive clone:

git clone --recursive https://github.com/twist-numerical/strands.git
cd strands

To compile and run the tests the following can be used:

mkdir build && cd build
cmake -DCMAKE_BUILD_TYPE=Release -DSTRANDS_PYTHON=OFF ..  # Build without python
cmake --build . --target strands_test
./strands_test --durations yes

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Strands-0.1.0.tar.gz (34.9 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

Strands-0.1.0-pp39-pypy39_pp73-win_amd64.whl (597.4 kB view details)

Uploaded PyPyWindows x86-64

Strands-0.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (638.2 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

Strands-0.1.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (614.8 kB view details)

Uploaded PyPymacOS 10.9+ x86-64

Strands-0.1.0-pp38-pypy38_pp73-win_amd64.whl (597.4 kB view details)

Uploaded PyPyWindows x86-64

Strands-0.1.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (638.4 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

Strands-0.1.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (614.9 kB view details)

Uploaded PyPymacOS 10.9+ x86-64

Strands-0.1.0-pp37-pypy37_pp73-win_amd64.whl (597.1 kB view details)

Uploaded PyPyWindows x86-64

Strands-0.1.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (637.8 kB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

Strands-0.1.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (614.3 kB view details)

Uploaded PyPymacOS 10.9+ x86-64

Strands-0.1.0-cp311-cp311-win_amd64.whl (596.2 kB view details)

Uploaded CPython 3.11Windows x86-64

Strands-0.1.0-cp311-cp311-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

Strands-0.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (635.7 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

Strands-0.1.0-cp311-cp311-macosx_10_9_x86_64.whl (615.1 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

Strands-0.1.0-cp310-cp310-win_amd64.whl (596.2 kB view details)

Uploaded CPython 3.10Windows x86-64

Strands-0.1.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

Strands-0.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (635.6 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

Strands-0.1.0-cp310-cp310-macosx_10_9_x86_64.whl (615.1 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

Strands-0.1.0-cp39-cp39-win_amd64.whl (596.3 kB view details)

Uploaded CPython 3.9Windows x86-64

Strands-0.1.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

Strands-0.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (639.0 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

Strands-0.1.0-cp39-cp39-macosx_10_9_x86_64.whl (615.3 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

Strands-0.1.0-cp38-cp38-win_amd64.whl (596.2 kB view details)

Uploaded CPython 3.8Windows x86-64

Strands-0.1.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ x86-64

Strands-0.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (638.6 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

Strands-0.1.0-cp38-cp38-macosx_10_9_x86_64.whl (615.0 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

Strands-0.1.0-cp37-cp37m-win_amd64.whl (597.9 kB view details)

Uploaded CPython 3.7mWindows x86-64

Strands-0.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7mmusllinux: musl 1.1+ x86-64

Strands-0.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (636.2 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

Strands-0.1.0-cp37-cp37m-macosx_10_9_x86_64.whl (613.7 kB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

Strands-0.1.0-cp36-cp36m-win_amd64.whl (597.8 kB view details)

Uploaded CPython 3.6mWindows x86-64

Strands-0.1.0-cp36-cp36m-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.6mmusllinux: musl 1.1+ x86-64

Strands-0.1.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (636.2 kB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ x86-64

Strands-0.1.0-cp36-cp36m-macosx_10_9_x86_64.whl (613.8 kB view details)

Uploaded CPython 3.6mmacOS 10.9+ x86-64

File details

Details for the file Strands-0.1.0.tar.gz.

File metadata

  • Download URL: Strands-0.1.0.tar.gz
  • Upload date:
  • Size: 34.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for Strands-0.1.0.tar.gz
Algorithm Hash digest
SHA256 f43378968a607a273ea52e4001450bc0cd35f4464c7d2b0e633b182a6bc775a2
MD5 7fd8cbe0cd2607f0995e8df77fbf251d
BLAKE2b-256 e8714cfb6937559a68e9bd0364999097c789121de35c212c6797b956d469b447

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for Strands-0.1.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 609e5abe78fbf3f65b3c82d64de3db310db111800b2c1f322b51a5e68412d132
MD5 411b30cb13072bd8601b5eb01ff7b402
BLAKE2b-256 03870c30401ef9ce22aca4793c40b22ebcb6ef8a9c9e10d558a5198c8fcd4c03

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Strands-0.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 476cd7beb52f8c4f77fb6297c035766db7a578c27f046cfa43d507c10ccb46fb
MD5 34f200c34133e184bb451b0ca4440616
BLAKE2b-256 8d731593d4d635c9b884ccf56f84b5b028cc087c45488eb389018b67529bfc28

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for Strands-0.1.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0cfc6bf1577ffd22c7245ef04b2d533a81ef82b25b03c00ced456dd9ae3ec6e3
MD5 e96ab5319dfd72abc3a7205b43b20cf9
BLAKE2b-256 4042936ea4b915e783d7e7a7edcd7ca47405ea0a81b0e507b53f6579a2f73b5f

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for Strands-0.1.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 920f503a2051ef9dfce921c4a3b45349bd8d2835a0d6197df713e07ef307734e
MD5 d371c899591e3e60ff946e2a9e4b270c
BLAKE2b-256 a08f9c6bbc797dd3803a93a9c274a117d78f43f7766329a4282e1355ba761573

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Strands-0.1.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fba6f5a6133c5a70f556fa4c4b030aaa26d4dd34d73e3074130dc3bf8a878b71
MD5 509d781b8da95265e35877273b7bc583
BLAKE2b-256 4cccc525f8634162ae751d4306e46114aaeb6a42cfced8a888b4a6bdbf057970

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for Strands-0.1.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 89bebee2ea60a291aa94849ac8a7f684dbaba75f769eb459dfc479d47ae2fd54
MD5 80edab3322ed807b3bd891b7fd3c27ea
BLAKE2b-256 6f430f0322ce59c6bf21d2b28d84a78deaa9abcdc7d7ccf22a806d83473e5637

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for Strands-0.1.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 659c2a98aa124570c17b9fbe7c3c60b00550853cd464043ecdb912d5a43c5206
MD5 b78cf96f5d7e863cfddf1dc1e33fe3d3
BLAKE2b-256 b4bb983dde8e6c31818454f58469be015aaca37cff0c466e9a20dacf749ae16f

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Strands-0.1.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7427e6e98049633fd8e181c9f926edcc59749a0818eececc55100b5c5668bfb9
MD5 29221ca28b514452898ba3b20388deda
BLAKE2b-256 3d5532b6a97ca8457509b715b0752aaad66163d192baf051dbe82e8ee8ec399e

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for Strands-0.1.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bfcedaa2b9084d05d1fa5a08a8fe0252ce6846c08cfa274ee20f86802d6e6418
MD5 237937a70e1a73f0a674b1f5afff6d20
BLAKE2b-256 0940a7553ef0032de0dc38cf87d6c57e200f9a4344a8bbf2a04f85f2c47fb473

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: Strands-0.1.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 596.2 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for Strands-0.1.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 086d6afdca8d2f2d1b15e2949dc44cdfc66f40912949ce078086e8e7320f0ef6
MD5 59d4a8f37a68363af7a488a185f30963
BLAKE2b-256 7c3bae4fb83db6c5207d4b30829d3a3c9a1275de349bc0479bcce540dfcbaea8

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for Strands-0.1.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 48f2a6208def71656582e898c91fd7f2d21d6c8f30b5d7fdfeb4eacd4c575ed6
MD5 fc84243015c56fcc619891b2c25b649d
BLAKE2b-256 ddc320877269084ea2a8a915e2ace886cf29b50bb21aeec06bf0bb3d96c15361

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Strands-0.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 497a172dc7a8aaeab99c2ec27130983e89b0a977c8f90e78333b5a1dcbce16bd
MD5 254d38d2bbb18512ad8837bc9729387a
BLAKE2b-256 3c91eda95dd3c62af19f13c63f8eb1d63f2994c0b7d05cca0802507641c0001a

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for Strands-0.1.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9cf170da4cdcaa2b2967abe5d1bad1ce9ccfa394d19550e9732d71e2765286b7
MD5 4e358a7aff5133988d3ba3c30d93d193
BLAKE2b-256 ca5eb8e58aacb5034f69a873ef055c42fbd52b91ab55d1f2a841a474fac72e37

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: Strands-0.1.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 596.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for Strands-0.1.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 68f69de7c4a3342207665f602d870bd9314c7d4ca45c8c5cd6d3ddd339df188f
MD5 b210034b3f1e2ae3a9d2ac2da9f2b203
BLAKE2b-256 77bca2b58de4dd1ef2a918c2e80101bab2a246bd68c8fea37b219e9fa7c72482

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for Strands-0.1.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 778dd1727689e7c81cd69d4b9cff27fa886b7e797c78779a34213e430a852f42
MD5 8714f6814c5c04dd537c20b9664b3b74
BLAKE2b-256 aedab8857832afa8c6ddce37a460248b18c566f439dddcf71e6f0f03ba7cb612

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Strands-0.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ca6b944d7389419223e43df2d405c3d762b29c317874c9331c1fe3c7695948c6
MD5 14f54bc03f8726119181dc677fb585d0
BLAKE2b-256 6c0148a2dfbb12f9a61492e51bdce20199e246e3a50fba1b716804f9918caddb

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for Strands-0.1.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 096bace78eef583a740b54ec4aa845308751a7e55cc532fdcbe72c4814dbc44b
MD5 5b5cd9b05abad1b501c3748593942447
BLAKE2b-256 bd0bba0454fe9b5ade1ea46addb7f00e8579b3ba3bd3974255f017c50969505b

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: Strands-0.1.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 596.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for Strands-0.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5ff8903d853ea535e866bfd907860b8633f617252877491c9ff6bfbd77503934
MD5 2c3e1151ccfa31c736062d7d20e9f689
BLAKE2b-256 6ec4548a19d2c2b0b254675e8a93f81df7c4f2f66160239154eb93613e1521e9

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for Strands-0.1.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fdbf60b457425b6b4660eb342468a9be8e801a55428112167511f0d8e6ba3bd6
MD5 d342e5127fa3ff1e96b197ce75abf518
BLAKE2b-256 3998d3c397f77f2895c63128ca3a98f295652fff29d3806f3dae996024b551ca

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Strands-0.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 88550f6c271f650bdf13a99582b62498bba55a128e5eccaf1b2db6557a2764e1
MD5 510a62019dd0103bb0a70651904481de
BLAKE2b-256 155d5b60663d7e25822ac9f252e2abb47748e78d3089b1b1149e09d333d41957

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for Strands-0.1.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7c5c7a3ccb4b3e4720d8534007e13d67828610ce8ac9f435bc3521467fb9eb24
MD5 0e046122f0ba46c9807b6c85381adc14
BLAKE2b-256 408396862cc2bb6163fe8a19d94a4b86e5507f84d62406dc4499216428feb8ab

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: Strands-0.1.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 596.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for Strands-0.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 50be9300e8577837e36d2ff3bb8ca724d9af5e65466805e044dfdc9eadb27ebc
MD5 aa858dc25c21bd003aabfc8540e04141
BLAKE2b-256 74af40c9a6d12301b00291bfb4419e2a9478dfbb2c15174ead9adf0670176a2c

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for Strands-0.1.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e6b683c6b5fe699327fe5285915f0d23b5d0c2ffe73e4b3a574fe1e7c896ea6c
MD5 97cb02d7edfaf92468f5f80e07be7400
BLAKE2b-256 dc3cb5c50e0eaf8a9785279f8fe80a30d26e6c159b9a447b6f4d52e9a4b36a80

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Strands-0.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ca60700bab13bb7fb8e75d446d2434aff1f0b08673425624f0dea86fa84d4ca1
MD5 0b516be4f936ad800f555772409bf9bb
BLAKE2b-256 963535333f511fe28dd4cb4f166b2b3bc4c6318686751fdf1d85989297f5fc88

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for Strands-0.1.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 62f9763a775485cc47c18eca86f3836b8aaa01c4466d29d504540c8b6d016d4c
MD5 ed8e8d11432db9473ed209a37c32f906
BLAKE2b-256 9f9106d36cce697a4e4eea86a5dd33c4a57168f3dad931d1e8b2b73b663456b7

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: Strands-0.1.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 597.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for Strands-0.1.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 52770c6e1a67f2b948a3819ffdfd98cd56c2961b1c64ed2a9553576beb99164e
MD5 a1155e740abfea3993075c413ec9bb47
BLAKE2b-256 2c97c5b8f9b7568e4bfe3078b474b9554e4f409230ca123a27d98e5a7cfaf0bd

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for Strands-0.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e8682bea2f8b528b5d73c9634b27766306cd461df99f85fccb7bbef95335d3bf
MD5 3a06297098f83b55f028e51b910e6720
BLAKE2b-256 28aa2bd90102e952647eb0441bdd39096e61cff2cc6f8977e43d0c44529150e3

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Strands-0.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1977cf96a0368a28f562d409322e2ec6b6eef5c32a651f47c49e4117bac7c68c
MD5 c9cc56bd00f9d52680422091dd228c75
BLAKE2b-256 a6742406a1ba483b45d5683932a2f591ab8756862df0ccdb38680bb0e7d70e7f

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for Strands-0.1.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 936bbf79bab967565fe45ed82979744768703b72d8b0dfd0925ab6b9817bc896
MD5 f769c0bf6f8a9ec26a470e4177e1dfc9
BLAKE2b-256 1772676073a7becaa9d7875a457ce1e3a1056014e25296fc3d98964440a40c42

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: Strands-0.1.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 597.8 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for Strands-0.1.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 619b38c46ac7d8c71bccef8b2e7d80390c780cf72770b68e3c505ae76a1ae3e6
MD5 b30ad40cb1a189fe893e458382969a0b
BLAKE2b-256 5de2e33025083e15843a3933e4176e73cad5012ea85b9115b0a8d4c37624bbde

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for Strands-0.1.0-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d89b34a00361d80340ecef2969e06475ada63db92904bb743055cee1a2f95d9e
MD5 ed7e04b09516665bf50eeada5ff55252
BLAKE2b-256 20e30b1e3bf09c25d6cc4a0b5c6f5b26c2d814ddcc1199093731152b5aed442e

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Strands-0.1.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 555a70fb8b399c716e8aea043a1104e483738de81aef647813cbb4d6147515d5
MD5 b57ab1580904afc603a0ed462b8b5d0b
BLAKE2b-256 b4f170130ffa594d8d40c4373ed900514420ef698f3551c5cb2459c844844762

See more details on using hashes here.

File details

Details for the file Strands-0.1.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for Strands-0.1.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2567bb633e9743977cedf74663032a2694138f2f12b1a89079219e167df8af5a
MD5 ee73b1e7a6ad1af2d733a9026cd31aee
BLAKE2b-256 6a51608636abb45a31bb9460191c7de9592191186c5d7923454f0caa465ee31e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page