expressive iteration
Project description
༄ streamable
fluent iteration
TL;DR:
🇹 Typed | Stream[T] extends Iterable[T] : library fully typed, mypy it ! |
💤 Lazy | Operations are lazily evaluated at iteration time |
🔄 Concurrent | Threads or asyncio -based concurrency for I/O bound tasks |
🛡️ Robust | Extensively unittested for Python 3.7 to 3.12 with 100% coverage |
🪶 Light | pip install streamable with no additional dependencies |
1. install
pip install streamable
2. import
from streamable import Stream
3. init
Instantiate a Stream[T]
from an Iterable[T]
.
integers: Stream[int] = Stream(range(10))
4. operate
-
Stream
s are immutable: applying an operation returns a new stream. -
Operations are lazy: only evaluated at iteration time.
odd_integer_strings: Stream[str] = (
integers
.filter(lambda n: n % 2)
.map(str)
)
5. iterate
- Iterate over a
Stream[T]
as you would over any otherIterable[T]
. - Source elements are processed on-the-fly.
collect it
>>> list(odd_integer_strings)
['1', '3', '5', '7', '9']
>>> set(odd_integer_strings)
{'9', '1', '5', '3', '7'}
reduce it
>>> sum(integers)
45
>>> from functools import reduce
>>> reduce(str.__add__, odd_integer_strings)
'13579'
loop it
for odd_integer_string in odd_integer_strings:
...
📒 Operations
.map
Applies a transformation on elements:
negative_integer_strings: Stream[str] = integers.map(lambda n: -n).map(str)
assert list(integer_strings) == ['0', '-1', '-2', '-3', '-4', '-5', '-6', '-7', '-8', '-9']
It has an optional concurrency: int
parameter to execute the function concurrently (threads-based) while preserving the order.
It has a sibling operation called .amap
to apply an async function concurrently (see section asyncio
support).
.foreach
Applies a side effect on elements:
self_printing_integers: Stream[int] = integers.foreach(print)
assert list(self_printing_integers) == list(integers) # triggers the printing
It has an optional concurrency: int
parameter to execute the function concurrently (threads-based) while preserving the order.
It has a sibling operation called .aforeach
to apply an async function concurrently (see section asyncio
support).
.filter
Keeps only the elements that satisfy a condition:
pair_integers: Stream[int] = integers.filter(lambda n: n % 2 == 0)
assert list(pair_integers) == [0, 2, 4, 6, 8]
.throttle
Limits the rate at which elements are yielded:
slow_integers: Stream[int] = integers.throttle(per_second=5)
assert list(slow_integers) == list(integers) # takes 10 / 5 = 2 seconds
.group
Groups elements into List
s:
integers_5_by_5: Stream[List[int]] = integers.group(size=5)
assert list(integers_5_by_5) == [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]
integers_by_parity: Stream[List[int]] = integers.group(by=lambda n: n % 2)
assert list(integers_by_parity) == [[0, 2, 4, 6, 8], [1, 3, 5, 7, 9]]
integers_within_1s: Stream[List[int]] = integers.throttle(per_second=2).group(seconds=1)
assert list(integers_within_1s) == [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]
Combine the size
/by
/seconds
parameters:
integers_2_by_2_by_parity: Stream[List[int]] = integers.group(by=lambda n: n % 2, size=2)
assert list(integers_2_by_2_by_parity) == [[0, 2], [1, 3], [4, 6], [5, 7], [8], [9]]
.flatten
Ungroups elements assuming that they are Iterable
s.
pair_then_odd_integers: Stream[int] = integers_by_parity.flatten()
assert pair_then_odd_integers == [0, 2, 4, 6, 8, 1, 3, 5, 7, 9]
It has an optional concurrency: int
parameter to flatten several iterables concurrently (threads).
.catch
Catches a given type of exceptions:
safe_inverse_floats: Stream[float] = (
integers
.map(lambda n: round(1 / n, 2))
.catch(ZeroDivisionError)
)
assert list(safe_inverse_floats) == [1.0, 0.5, 0.33, 0.25, 0.2, 0.17, 0.14, 0.12, 0.11]
It has an optional finally_raise: bool
parameter to raise the first catched exception when upstream's iteration ends.
.truncate
Stops the iteration:
- after a given number of yielded elements:
five_first_integers: Stream[int] = integers.truncate(5)
assert list(five_first_integers) == [0, 1, 2, 3, 4]
- as soon as a condition is satisfied:
five_first_integers: Stream[int] = integers.truncate(when=lambda n: n == 5)
assert list(five_first_integers) == [0, 1, 2, 3, 4]
.observe
Logs the progress of iterations over this stream:
If you iterate on
observed_throttle_integers: Stream[int] = throttle_integers.observe("integers")
you will get these logs:
INFO: [duration=0:00:00.502155 errors=0] 1 integers yielded
INFO: [duration=0:00:01.006336 errors=0] 2 integers yielded
INFO: [duration=0:00:02.011921 errors=0] 4 integers yielded
INFO: [duration=0:00:04.029666 errors=0] 8 integers yielded
INFO: [duration=0:00:05.039571 errors=0] 10 integers yielded
The amount of logs will never be overwhelming because they are produced logarithmically e.g. the 11th log will be produced when the iteration reaches the 1024th element.
📦 Notes Box
Extract-Transform-Load tasks
One can leverage this library to write elegant ETL scripts, check the README dedicated to ETL.
support for asyncio
As an alternative to the threads-based concurrency available for .map
and .foreach
operations (via their concurrency
parameter), one can use .amap
and .aforeach
operations to apply async
functions concurrently on a stream:
import asyncio
import time
async def throttle_async_square(n: int) -> int:
await asyncio.sleep(3)
return n ** 2
def throttle_str(n: int) -> str:
time.sleep(3)
return str(n)
print(
", ".join(
integers
# coroutines-based concurrency
.amap(throttle_async_square, concurrency=8)
# threads-based concurrency
.map(throttle_str, concurrency=8)
.truncate(5)
)
)
this prints (in 6s):
0, 1, 4, 9, 16
CPU-bound tasks
For CPU-bound tasks, consider using the PyPy
interpreter whose Just In Time (JIT) compilation should drastically improve performances !
(Few rough runtime orders of magnitude: CPython vs PyPy vs Java vs C vs Rust.)
change logging level
logging.getLogger("streamable").setLevel(logging.WARNING)
visitor pattern
The Stream
class exposes an .accept
method and you can implement a visitor by extending the streamable.visitor.Visitor
class:
from streamable.visitor import Visitor
class DepthVisitor(Visitor[int]):
def visit_stream(self, stream: Stream) -> int:
if not stream.upstream:
return 1
return 1 + stream.upstream.accept(self)
def stream_depth(stream: Stream) -> int:
return stream.accept(DepthVisitor())
>>> stream_depth(odd_integer_strings)
3
import as functions
The Stream
's methods are also exposed as functions:
from streamable.functions import throttle
iterator: Iterator[int] = ...
throttle_iterator: Iterator[int] = throttle(iterator)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file streamable-0.15.0.tar.gz
.
File metadata
- Download URL: streamable-0.15.0.tar.gz
- Upload date:
- Size: 26.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8f44ad9b09b03c7e99c776f44314f3178574a0a90dc30bddd1dee3ecb5527671 |
|
MD5 | 96c68daf83034a5e52838aa07b829c0a |
|
BLAKE2b-256 | 799491ce8736b4c46bf2957510e1ccc8b6839b636e9dedc46cf73188f2c7d475 |
File details
Details for the file streamable-0.15.0-py3-none-any.whl
.
File metadata
- Download URL: streamable-0.15.0-py3-none-any.whl
- Upload date:
- Size: 27.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d0efe7f53efa7d925b3a6e6532b04104619002348d63d5aded542ac3299aa923 |
|
MD5 | 1a28e8ad4054d1983907a141611a5fb5 |
|
BLAKE2b-256 | 24f3aef25397bbcd19ab22990520e467e65aa1f3f12f82ddf1dff26dc066b50a |