Skip to main content

expressive iteration

Project description

streamable

fluent iteration

Actions Status codecov Actions Status Actions Status Actions Status


TL;DR:

🇹 Typed Stream[T] extends Iterable[T]: library fully typed, mypy it !
💤 Lazy Operations are lazily evaluated at iteration time
🔄 Concurrent Threads or asyncio-based concurrency for I/O bound tasks
🛡️ Robust Extensively unittested for Python 3.7 to 3.12 with 100% coverage
🪶 Light pip install streamable with no additional dependencies

1. install

pip install streamable

2. import

from streamable import Stream

3. init

Instantiate a Stream[T] from an Iterable[T].

integers: Stream[int] = Stream(range(10))

4. operate

  • Streams are immutable: applying an operation returns a new stream.

  • Operations are lazy: only evaluated at iteration time.

odd_integer_strings: Stream[str] = (
    integers
    .filter(lambda n: n % 2)
    .map(str)
)

5. iterate

  • Iterate over a Stream[T] as you would over any other Iterable[T].
  • Source elements are processed on-the-fly.

collect it

>>> list(odd_integer_strings)
['1', '3', '5', '7', '9']
>>> set(odd_integer_strings)
{'9', '1', '5', '3', '7'}

reduce it

>>> sum(integers)
45
>>> from functools import reduce
>>> reduce(str.__add__, odd_integer_strings)
'13579'

loop it

for odd_integer_string in odd_integer_strings:
    ...

📒 Operations

.map

Applies a transformation on elements:

negative_integer_strings: Stream[str] = integers.map(lambda n: -n).map(str)

assert list(integer_strings) == ['0', '-1', '-2', '-3', '-4', '-5', '-6', '-7', '-8', '-9']

It has an optional concurrency: int parameter to execute the function concurrently (threads-based) while preserving the order.

It has a sibling operation called .amap to apply an async function concurrently (see section asyncio support).

.foreach

Applies a side effect on elements:

self_printing_integers: Stream[int] = integers.foreach(print)

assert list(self_printing_integers) == list(integers)  # triggers the printing

It has an optional concurrency: int parameter to execute the function concurrently (threads-based) while preserving the order.

It has a sibling operation called .aforeach to apply an async function concurrently (see section asyncio support).

.filter

Keeps only the elements that satisfy a condition:

pair_integers: Stream[int] = integers.filter(lambda n: n % 2 == 0)

assert list(pair_integers) == [0, 2, 4, 6, 8]

.throttle

Limits the rate at which elements are yielded:

slow_integers: Stream[int] = integers.throttle(per_second=5)

assert list(slow_integers) == list(integers)  # takes 10 / 5 = 2 seconds

.group

Groups elements into Lists:

integers_5_by_5: Stream[List[int]] = integers.group(size=5)

assert list(integers_5_by_5) == [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]
integers_by_parity: Stream[List[int]] = integers.group(by=lambda n: n % 2)

assert list(integers_by_parity) == [[0, 2, 4, 6, 8], [1, 3, 5, 7, 9]]
integers_within_1s: Stream[List[int]] = integers.throttle(per_second=2).group(seconds=1)

assert list(integers_within_1s) == [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]

Combine the size/by/seconds parameters:

integers_2_by_2_by_parity: Stream[List[int]] = integers.group(by=lambda n: n % 2, size=2)

assert list(integers_2_by_2_by_parity) == [[0, 2], [1, 3], [4, 6], [5, 7], [8], [9]]

.flatten

Ungroups elements assuming that they are Iterables.

pair_then_odd_integers: Stream[int] = integers_by_parity.flatten()

assert pair_then_odd_integers == [0, 2, 4, 6, 8, 1, 3, 5, 7, 9]

It has an optional concurrency: int parameter to flatten several iterables concurrently (threads).

.catch

Catches a given type of exceptions:

safe_inverse_floats: Stream[float] = (
    integers
    .map(lambda n: round(1 / n, 2))
    .catch(ZeroDivisionError)
)

assert list(safe_inverse_floats) == [1.0, 0.5, 0.33, 0.25, 0.2, 0.17, 0.14, 0.12, 0.11]

It has an optional finally_raise: bool parameter to raise the first catched exception when upstream's iteration ends.

.truncate

Stops the iteration:

  • after a given number of yielded elements:
five_first_integers: Stream[int] = integers.truncate(5)

assert list(five_first_integers) == [0, 1, 2, 3, 4]
  • as soon as a condition is satisfied:
five_first_integers: Stream[int] = integers.truncate(when=lambda n: n == 5)

assert list(five_first_integers) == [0, 1, 2, 3, 4]

.observe

Logs the progress of iterations over this stream:

If you iterate on

observed_throttle_integers: Stream[int] = throttle_integers.observe("integers")

you will get these logs:

INFO: [duration=0:00:00.502155 errors=0] 1 integers yielded
INFO: [duration=0:00:01.006336 errors=0] 2 integers yielded
INFO: [duration=0:00:02.011921 errors=0] 4 integers yielded
INFO: [duration=0:00:04.029666 errors=0] 8 integers yielded
INFO: [duration=0:00:05.039571 errors=0] 10 integers yielded

The amount of logs will never be overwhelming because they are produced logarithmically e.g. the 11th log will be produced when the iteration reaches the 1024th element.


📦 Notes Box

Extract-Transform-Load tasks

One can leverage this library to write elegant ETL scripts, check the README dedicated to ETL.

support for asyncio

As an alternative to the threads-based concurrency available for .map and .foreach operations (via their concurrency parameter), one can use .amap and .aforeach operations to apply async functions concurrently on a stream:

import asyncio
import time

async def throttle_async_square(n: int) -> int:
    await asyncio.sleep(3)
    return n ** 2

def throttle_str(n: int) -> str:
    time.sleep(3)
    return str(n)

print(
    ", ".join(
        integers
        # coroutines-based concurrency
        .amap(throttle_async_square, concurrency=8)
        # threads-based concurrency
        .map(throttle_str, concurrency=8)
        .truncate(5)
    )
)

this prints (in 6s):

0, 1, 4, 9, 16

CPU-bound tasks

For CPU-bound tasks, consider using the PyPy interpreter whose Just In Time (JIT) compilation should drastically improve performances ! (Few rough runtime orders of magnitude: CPython vs PyPy vs Java vs C vs Rust.)

change logging level

logging.getLogger("streamable").setLevel(logging.WARNING)

visitor pattern

The Stream class exposes an .accept method and you can implement a visitor by extending the streamable.visitor.Visitor class:

from streamable.visitor import Visitor

class DepthVisitor(Visitor[int]):
    def visit_stream(self, stream: Stream) -> int:
        if not stream.upstream:
            return 1
        return 1 + stream.upstream.accept(self)

def stream_depth(stream: Stream) -> int:
    return stream.accept(DepthVisitor())
>>> stream_depth(odd_integer_strings)
3

import as functions

The Stream's methods are also exposed as functions:

from streamable.functions import throttle

iterator: Iterator[int] = ...
throttle_iterator: Iterator[int] = throttle(iterator)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

streamable-0.15.1.tar.gz (26.5 kB view details)

Uploaded Source

Built Distribution

streamable-0.15.1-py3-none-any.whl (27.5 kB view details)

Uploaded Python 3

File details

Details for the file streamable-0.15.1.tar.gz.

File metadata

  • Download URL: streamable-0.15.1.tar.gz
  • Upload date:
  • Size: 26.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for streamable-0.15.1.tar.gz
Algorithm Hash digest
SHA256 bb32bc0b2df907cbfa2955744b2f12b9ea2a9c9345dfcba39762684a8726113b
MD5 4c985b2f9d3ac8a54531018a35197254
BLAKE2b-256 b4b8f5d9d8ab185d0ac8b9ae989d70bdbeca8b58754a619da3f7fe124bd9e92a

See more details on using hashes here.

File details

Details for the file streamable-0.15.1-py3-none-any.whl.

File metadata

  • Download URL: streamable-0.15.1-py3-none-any.whl
  • Upload date:
  • Size: 27.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for streamable-0.15.1-py3-none-any.whl
Algorithm Hash digest
SHA256 6e20e457112f3a10b4bf20050e59d33d4b83500b78f7c1c41d1494abab6ebbb7
MD5 d3c49062d1a329cc68e3b85bdeede5e9
BLAKE2b-256 9484561fcb08972216f1b43804b228b33145dd8754b3add187a4564148c63cd5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page