Stream-like manipulation of iterables
Reason this release was yanked:
`.observe`operation is mute
Project description
༄ streamable
Stream-like manipulation of iterables
A Stream[T]
decorates an Iterable[T]
with a fluent interface enabling the chaining of lazy operations.
🔗 Fluent | chain methods! |
🇹 Typed | type-annotated and mypy able |
💤 Lazy | operations are lazily evaluated at iteration time |
🔄 Concurrent | via threads or processes or asyncio |
🛡️ Robust | unit-tested for Python 3.7 to 3.12 with 100% coverage |
🪶 Minimalist | pip install streamable with no additional dependencies |
1. install
pip install streamable
2. import
from streamable import Stream
3. init
Instantiate a Stream[T]
from an Iterable[T]
.
integers: Stream[int] = Stream(range(10))
4. operate
-
Stream
s are immutable: applying an operation returns a new stream. -
Operations are lazy: only evaluated at iteration time.
inverses: Stream[float] = (
integers
.map(lambda n: round(1 / n, 2))
.catch(ZeroDivisionError)
)
5. iterate
- Iterate over a
Stream[T]
as you would over any otherIterable[T]
. - Source elements are processed on-the-fly.
collect it
>>> list(inverses)
[1.0, 0.5, 0.33, 0.25, 0.2, 0.17, 0.14, 0.12, 0.11]
>>> set(inverses)
{0.5, 1.0, 0.2, 0.33, 0.25, 0.17, 0.14, 0.12, 0.11}
reduce it
>>> sum(inverses)
2.82
>>> max(inverses)
1.0
>>> from functools import reduce
>>> reduce(..., inverses)
loop it
>>> for inverse in inverses:
>>> ...
next it
>>> inverses_iter = iter(inverses)
>>> next(inverses_iter)
1.0
>>> next(inverses_iter)
0.5
📒 Operations
.map
Applies a transformation on elements:
negative_integer_strings: Stream[str] = integers.map(lambda n: -n).map(str)
assert list(negative_integer_strings) == ['0', '-1', '-2', '-3', '-4', '-5', '-6', '-7', '-8', '-9']
thread-based concurrency
Applies the transformation via
concurrency
threads:
import requests
pokemon_names: Stream[str] = (
Stream(range(1, 4))
.map(lambda i: f"https://pokeapi.co/api/v2/pokemon-species/{i}")
.map(requests.get, concurrency=3)
.map(requests.Response.json)
.map(lambda poke: poke["name"])
)
assert list(pokemon_names) == ['bulbasaur', 'ivysaur', 'venusaur']
Preserves the upstream order by default (FIFO), but you can set
ordered=False
for First Done First Out.
concurrency
is also the size of the buffer containing not-yet-yielded results. If the buffer is full, the iteration over the upstream is stopped until some results are yielded out of the buffer.
process-based concurrency
Set
via_processes
:
state: List[int] = []
n_integers: int = (
integers
.map(state.append, concurrency=4, via_processes=True)
.count()
)
assert n_integers == 10
assert state == [] # main process's state not mutated
async-based concurrency
The sibling operation
.amap
applies an async function:
import httpx
import asyncio
http_async_client = httpx.AsyncClient()
pokemon_names: Stream[str] = (
Stream(range(1, 4))
.map(lambda i: f"https://pokeapi.co/api/v2/pokemon-species/{i}")
.amap(http_async_client.get, concurrency=3)
.map(httpx.Response.json)
.map(lambda poke: poke["name"])
)
assert list(pokemon_names) == ['bulbasaur', 'ivysaur', 'venusaur']
asyncio.get_event_loop().run_until_complete(http_async_client.aclose())
starmap
The
star
function decorator transforms a function that takes several positional arguments into a function that takes a tuple:
from streamable import star
zeros: Stream[int] = (
Stream(enumerate(integers))
.map(star(lambda index, integer: index - integer))
)
assert list(zeros) == [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Also convenient with
.foreach
,.filter
, ...
.foreach
Applies a side effect on elements:
self_printing_integers: Stream[int] = integers.foreach(print)
assert list(self_printing_integers) == list(integers) # triggers the printing
thread-based concurrency
Like
.map
it has an optionalconcurrency: int
parameter.
process-based concurrency
Like
.map
it has an optionalvia_processes
parameter.
async-based concurrency
Like
.map
it has a sibling.aforeach
operation for async.
.filter
Keeps only the elements that satisfy a condition:
pair_integers: Stream[int] = integers.filter(lambda n: n % 2 == 0)
assert list(pair_integers) == [0, 2, 4, 6, 8]
.throttle
Limits the number of yields
per_second
/per_minute
/per_hour
:
slow_integers: Stream[int] = integers.throttle(per_second=5)
assert list(slow_integers) == list(integers) # takes 10 / 5 = 2 seconds
and/or ensure a minimum time
interval
separates successive yields:
from datetime import timedelta
slow_integers = integers.throttle(interval=timedelta(milliseconds=100))
assert list(slow_integers) == list(integers) # takes 10 * 0.1 = 1 second
.group
Groups elements into
List
s:
integers_5_by_5: Stream[List[int]] = integers.group(size=5)
assert list(integers_5_by_5) == [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]
integers_by_parity: Stream[List[int]] = integers.group(by=lambda n: n % 2)
assert list(integers_by_parity) == [[0, 2, 4, 6, 8], [1, 3, 5, 7, 9]]
from datetime import timedelta
integers_within_1s: Stream[List[int]] = (
integers
.throttle(per_second=2)
.group(interval=timedelta(seconds=0.99))
)
assert list(integers_within_1s) == [[0, 1, 2], [3, 4], [5, 6], [7, 8], [9]]
Mix
size
/by
/interval
parameters:
integers_2_by_2_by_parity: Stream[List[int]] = integers.group(by=lambda n: n % 2, size=2)
assert list(integers_2_by_2_by_parity) == [[0, 2], [1, 3], [4, 6], [5, 7], [8], [9]]
.flatten
Ungroups elements assuming that they are
Iterable
s.
pair_then_odd_integers: Stream[int] = integers_by_parity.flatten()
assert list(pair_then_odd_integers) == [0, 2, 4, 6, 8, 1, 3, 5, 7, 9]
thread-based concurrency
Flattens
concurrency
iterables concurrently:
letters_mix: Stream[str] = Stream(
[
Stream(["a"] * 5).throttle(per_second=10),
Stream(["b"] * 5).throttle(per_second=10),
Stream(["c"] * 5).throttle(per_second=10),
]
).flatten(concurrency=2)
assert list(letters_mix) == ['a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'c', 'c', 'c', 'c', 'c']
.catch
Catches a given type of exceptions, and optionally yields a
replacement
value:
inverses: Stream[float] = (
integers
.map(lambda n: round(1 / n, 2))
.catch(ZeroDivisionError, replacement=float("inf"))
)
assert list(inverses) == [float("inf"), 1.0, 0.5, 0.33, 0.25, 0.2, 0.17, 0.14, 0.12, 0.11]
You can specify an additional
when
condition for the catch:
import requests
from requests.exceptions import SSLError
status_codes_ignoring_resolution_errors: Stream[int] = (
Stream(["https://github.com", "https://foo.bar", "https://github.com/foo/bar"])
.map(requests.get, concurrency=2)
.catch(SSLError, when=lambda exception: "Max retries exceeded with url" in str(exception))
.map(lambda response: response.status_code)
)
assert list(status_codes_ignoring_resolution_errors) == [200, 404]
It has an optional
finally_raise: bool
parameter to raise the first catched exception when iteration ends.
.truncate
Ends iteration once a given number of elements have been yielded:
five_first_integers: Stream[int] = integers.truncate(5)
assert list(five_first_integers) == [0, 1, 2, 3, 4]
... or when a condition has become satisfied:
five_first_integers: Stream[int] = integers.truncate(when=lambda n: n == 5)
assert list(five_first_integers) == [0, 1, 2, 3, 4]
.observe
Logs the progress of iterations over this stream, if you iterate on:
observed_slow_integers: Stream[int] = slow_integers.observe("integers")
you will get these logs:
INFO: [duration=0:00:00.502155 errors=0] 1 integers yielded
INFO: [duration=0:00:01.006336 errors=0] 2 integers yielded
INFO: [duration=0:00:02.011921 errors=0] 4 integers yielded
INFO: [duration=0:00:04.029666 errors=0] 8 integers yielded
INFO: [duration=0:00:05.039571 errors=0] 10 integers yielded
The amount of logs will never be overwhelming because they are produced logarithmically e.g. the 11th log will be produced when the iteration reaches the 1024th element.
zip
Use the standard
zip
function:
from streamable import star
cubes: Stream[int] = (
Stream(zip(integers, integers, integers)) # Stream[Tuple[int, int, int]]
.map(star(lambda a, b, c: a * b * c))
)
assert list(cubes) == [0, 1, 8, 27, 64, 125, 216, 343, 512, 729]
📦 Notes Box
Contribute
Please help us ! Feel very welcome to:
Extract-Transform-Load
ETL scripts (i.e. scripts fetching -> processing -> pushing data) can benefit from the expressivity of this library.
Here is an example that you can copy-paste and try (it only requires requests
): it creates a CSV file containing all the 67 quadrupeds from the 1st, 2nd and 3rd generations of Pokémons (kudos to PokéAPI)
import csv
from datetime import timedelta
import itertools
import requests
from streamable import Stream
with open("./quadruped_pokemons.csv", mode="w") as file:
fields = ["id", "name", "is_legendary", "base_happiness", "capture_rate"]
writer = csv.DictWriter(file, fields, extrasaction='ignore')
writer.writeheader()
(
# Infinite Stream[int] of Pokemon ids starting from Pokémon #1: Bulbasaur
Stream(itertools.count(1))
# Limits to 16 requests per second to be friendly to our fellow PokéAPI devs
.throttle(per_second=16)
# GETs pokemons concurrently using a pool of 8 threads
.map(lambda poke_id: f"https://pokeapi.co/api/v2/pokemon-species/{poke_id}")
.map(requests.get, concurrency=8)
.foreach(requests.Response.raise_for_status)
.map(requests.Response.json)
# Stops the iteration when reaching the 1st pokemon of the 4th generation
.truncate(when=lambda poke: poke["generation"]["name"] == "generation-iv")
.observe("pokemons")
# Keeps only quadruped Pokemons
.filter(lambda poke: poke["shape"]["name"] == "quadruped")
.observe("quadruped pokemons")
# Catches errors due to None "generation" or "shape"
.catch(
TypeError,
when=lambda error: str(error) == "'NoneType' object is not subscriptable"
)
# Writes a batch of pokemons every 5 seconds to the CSV file
.group(interval=timedelta(seconds=5))
.foreach(writer.writerows)
.flatten()
.observe("written pokemons")
# Catches exceptions and raises the 1st one at the end of the iteration
.catch(finally_raise=True)
# Actually triggers an iteration (the lines above define lazy operations)
.count()
)
CPU-bound tasks
For CPU-bound tasks, consider using the PyPy
interpreter whose Just In Time (JIT) compilation should drastically improve performances !
change logging level
logging.getLogger("streamable").setLevel(logging.WARNING) # default is INFO
visitor pattern
The Stream
class exposes an .accept
method and you can implement a visitor by extending the streamable.visitors.Visitor
abstract class:
from streamable.visitors import Visitor
class DepthVisitor(Visitor[int]):
def visit_stream(self, stream: Stream) -> int:
if not stream.upstream:
return 1
return 1 + stream.upstream.accept(self)
def depth(stream: Stream) -> int:
return stream.accept(DepthVisitor())
assert depth(Stream(range(10)).map(str).filter()) == 3
as functions
The Stream
's methods are also exposed as functions:
from streamable.functions import catch
inverse_integers: Iterator[int] = map(lambda n: 1 / n, range(10))
safe_inverse_integers: Iterator[int] = catch(inverse_integers, ZeroDivisionError)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file streamable-1.2.1.tar.gz
.
File metadata
- Download URL: streamable-1.2.1.tar.gz
- Upload date:
- Size: 37.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e0a1ed6cc30380c4f22abed20a207c1eb249c3bed00351e30df32535ea20e36c |
|
MD5 | e44c3eef80b5e2e162c5b1936a236435 |
|
BLAKE2b-256 | 0e915666bd6a2a38eb8c26c8a576e06215e9e31d79c6aa8054767f3b3507ec32 |
File details
Details for the file streamable-1.2.1-py3-none-any.whl
.
File metadata
- Download URL: streamable-1.2.1-py3-none-any.whl
- Upload date:
- Size: 39.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 606074ee699fc83ba067f987a7c8f9c337e74c38623bb665edcbe694b14e3c03 |
|
MD5 | d3eb38e8f94d78acd86346cfd1e4b7c9 |
|
BLAKE2b-256 | a1146888a3f2417866b8e3c85985feea8c8210529e372e1622be3131e19ff32d |