Structure-preserving neural networks
Project description
STRUPNET: structure-preserving neural networks
This package implements structure-preserving neural networks for learning dynamics of differential systems from data.
Installing
Install it using pip: pip install strupnet
Symplectic neural networks (SympNets)
Basic example
import torch
from strupnet import SympNet
dim=2 # degrees of freedom for the Hamiltonian system. x = (p, q) \in R^{2*dim}
# Define a symplectic neural network with random parameters:
symp_net = SympNet(dim=dim, layers=12, width=8)
x0 = torch.randn(2 * dim) # phase space coordinate x = (p, q)
h = torch.tensor([0.1]) # time-step
x1 = symp_net(x0, h) # defines a random but symplectic transformation from x0 to x1
Training a SympNet
SympNet inherits from torch.nn.Module
and can therefore be trained like a pytorch module. Here is a minimal working example of training a SympNet using quadratic ridge polynomials (which is best for quadratic Hamiltonians).
Generating data
We will generate data of the form $ \{x(ih)\}_{i=0}^{n+1}=\{p(ih), q(ih)\}_{i=0}^{n+1}
$, where $x(t)
$ is the solution to the Hamiltonian ODE $\dot{x} = J\nabla H
$, with the simple Harmonic oscillator Hamiltonian $H = \frac{1}{2} (p^2 + q^2)
$. The data is arranged in the form $x_0 = \{x(ih)\}_{i=0}^{n}
$, $x_1 = \{x((i+1)h)\}_{i=0}^{n}
$ and same for $t
$.
import torch
# Generate training and testing data using simple harmonic oscillator solution
def simple_harmonic_oscillator_solution(t_start, t_end, timestep):
time_grid = torch.linspace(t_start, t_end, int((t_end-t_start)/timestep)+1)
p_sol = torch.cos(time_grid)
q_sol = torch.sin(time_grid)
pq_sol = torch.stack([p_sol, q_sol], dim=-1)
return pq_sol, time_grid.unsqueeze(dim=1)
timestep=0.05
x_train, t_train = simple_harmonic_oscillator_solution(t_start=0, t_end=1, timestep=timestep)
x_test, t_test = simple_harmonic_oscillator_solution(t_start=1, t_end=4, timestep=timestep)
x0_train, x1_train, t0_train, t1_train = x_train[:-1, :], x_train[1:, :], t_train[:-1, :], t_train[1:, :]
x0_test, x1_test, t0_test, t1_test = x_test[:-1, :], x_test[1:, :], t_test[:-1, :], t_test[1:, :]
Training
We can train a SympNet like any PyTorch module on the loss function defined as follows. Letting $\Phi_h^{\theta}(x)$ denote the SympNet, where $\theta$ denotes its set of trainable parameters, then we want to find $\theta$ that minimises
$\qquad loss=\sum_{i=0}^{n}|\Phi_h^{\theta}(x(ih))-x\left((i+1)h\right)|^2$
from strupnet import SympNet
# Initialize Symplectic Neural Network
symp_net = SympNet(dim=1, layers=2, max_degree=2, method="P")
# Train it like any other PyTorch model
optimizer = torch.optim.Adam(symp_net.parameters(), lr=0.01)
mse = torch.nn.MSELoss()
for epoch in range(1000):
optimizer.zero_grad()
x1_pred = symp_net(x=x0_train, dt=t1_train - t0_train)
loss = mse(x1_train, x1_pred)
loss.backward()
optimizer.step()
print("final loss value: ", loss.item())
x1_test_pred = symp_net(x=x0_test, dt=t1_test - t0_test)
print("test set error", torch.norm(x1_test_pred - x1_test).item())
Outputs:
Final loss value: 2.1763008371575767e-33
test set error 5.992433957888383e-16
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file strupnet-0.0.2.tar.gz
.
File metadata
- Download URL: strupnet-0.0.2.tar.gz
- Upload date:
- Size: 13.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a7517e2cb7c14b16068815db282f6d5d48192ec9d477d2b568e8d89442cfc057 |
|
MD5 | 5fd70b35da00113ac8b73f6e9a223324 |
|
BLAKE2b-256 | 731b0375178e24950587f93322c351234162ed8ddb73f713d59817780222f7cb |
File details
Details for the file strupnet-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: strupnet-0.0.2-py3-none-any.whl
- Upload date:
- Size: 16.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d6d3b5e199d4deeb717750481e493ae92fa91b767ae4f6e25acd3a8fa6688249 |
|
MD5 | 5577523cbd2cc6e99bb1701a8530798b |
|
BLAKE2b-256 | cfad68424f28a14d1acd405b1063afdf24ac8e8c4bba6d4c72994eacaec99d76 |