Skip to main content

The official Python library for SweatStack

Project description

SweatStack Python Library

Overview

This is the Python library for Sweat Stack, a powerfull application designed for athletes, coaches, and sports scientists to analyze athletic performance data. This library provides a seamless interface to interact with the SweatStack API, allowing users to retrieve, analyze, and visualize activity data and performance metrics.

Installation

We recommend using uv to manage Python and install the library. Read more about uv here.

uv pip install sweatstack

You can also install it with pip (or pipx) directly.

python -m pip install sweatstack

Quickstart

If you have uv installed, the fastest way to get started is to run the following command in your terminal:

uvx --from "sweatstack[jupyterlab]" sweatlab

This will open a JupyterLab instance with the SweatStack library pre-imported and authenticated via the browser authentication flow.

uvx --from "sweatstack[ipython]" sweatshell

This will open an interactive Python shell with the SweatStack library pre-imported and it will automatically trigger the browser authentication flow.

Alternatively, you can open a Python shell of your own choice, install the library and get started:

import sweatstack as ss

ss.login()

latest_activity = ss.get_latest_activity()

print(latest_activity)  # `latest_activity` is a pandas DataFrame

Authentication

To be able to access your data in Sweat Stack, you need to authenticate the library with your Sweat Stack account. The easiest way to do this is to use your browser to login:

import sweatstack as ss

ss.login()

This will automaticallyset the appropriate authentication tokens in your Python code.

Alternatively, you can set the SWEAT_STACK_API_KEY environment variable to your API key. You can create an API key here.

import os

import sweatstack as ss

os.environ["SWEAT_STACK_API_KEY"] = "your_api_key_here"

# Now you can use the library

Listing activities

To list activities, you can use the list_activities() function:

for activity in ss.list_activities():
    print(activity)

Info: This method returns a summary of the activities, not the actual timeseries data. To get the actual data, you need to use the get_activity_data() or get_latest_activity_data()) methods documented below.

Getting activity summaries

To get the summary of an activity, you can use the get_activity() function:

activity = ss.get_activity(activity_id)
print(activity)

To quickly the latest activity, you can use the get_latest_activity() function:

activity = ss.get_latest_activity()
print(activity)

Getting activity data

To get the timeseries data of one activity, you can use the get_activity_data() method:

data = ss.get_activity_data(activity_id)
print(data)

This method returns a pandas DataFrame. If your are not familiar with pandas and/or DataFrames, start by reading this introduction.

Similar as for the summaries, you can use the get_latest_activity_data() method to get the timeseries data of the latest activity:

data = ss.get_latest_activity_data()
print(data)

To get the timeseries data of multiple activities, you can use the get_longitudinal_data() method:

longitudinal_data = ss.get_longitudinal_data(
    start=date.today() - timedelta(days=180),
    sport="running",
    metrics=["power", "heart_rate"],
)
print(longitudinal_data)

Because the result of get_longitudinal_data() can be very large, the data is retrieved in a compressed format (parquet) that requires the pyarrow library to be installed. If you intend to use this method, make sure to install the sweatstack library with this extra dependency:

uv pip install sweatstack[parquet]

Also note that depending on the amount of data that you requested, this might take a while.

Plotting

To plot data, there are a few plotting methods available.

ss.plot_activity_data(activity_id)

...wil plot the all the available columns from the specified activity. There is also a ss.plot_latest_activity_data() method that will plot the latest activity data.

Additionally, there is a ss.plot_data() method that you can use to for example plot longitudinal data or for more generic use. This method requires you to pass the actual data as a pandas DataFrame and will not work with the activity id's used above.

ss.plot_data(data)

All of these methods accept a metrics argument, which is a list of metrics that you want to plot, as well as a subplots argument, which is a boolean that specifies whether you want to plot each metrics in subplots or not. Example:

ss.plot_latest_activity_data(metrics=["heart_rate", "power"], subplots=True)
ss.plot_data(data, metrics=["heart_rate", "power"], subplots=False)

Finally, there is a ss.plot_scatter() method that you can use to plot a scatter plot of two metrics:

ss.plot_scatter(x=data["power"], y=data["heart_rate"])

At the moment, only the Plotly plotting backend is available, but more plotting backends (like Matplotlib) will be added in the future.

Please note that these plotting methods are just there for your convenience. If you want to customize your plots, we recommend using a plotting library like Plotly or Matplotlib directly. This page from the pandas documentation gives a good overview of the available plotting options for the pandas.DataFrames and pandas.Series that this library returns.

Accessing other user's data

By default, the library will give you access to your own data.

You can list all users you have access to with the list_accessible_users() method:

for user in ss.list_accessible_users():
    print(user)

You can switch to another user by using the switch_user() method:

ss.switch_user(user)

Calling any of the methods above will return the data for the user you switched to.

You can easily switch back to your original user by calling the switch_to_root_user() method:

ss.switch_to_root_user()

Metrics

The API supports the following metrics:

  • power: Power in Watt
  • speed: Speed in m/s
  • heart_rate: Heart rate in BPM
  • smo2: Muscle oxygen saturation in %
  • core_temperature: Core body temperature in °C
  • altitude: Altitude in meters
  • cadence: Cadence in RPM
  • temperature: Ambient temperature in °C
  • distance: Distance in m
  • longitude: Longitude in degrees
  • latitude: Latitude in degrees

Sports

The API supports the following sports:

  • running: Running
  • cycling: Cycling

More sports will be added in the future.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sweatstack-0.6.0.tar.gz (2.0 MB view details)

Uploaded Source

Built Distribution

sweatstack-0.6.0-py3-none-any.whl (2.0 MB view details)

Uploaded Python 3

File details

Details for the file sweatstack-0.6.0.tar.gz.

File metadata

  • Download URL: sweatstack-0.6.0.tar.gz
  • Upload date:
  • Size: 2.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for sweatstack-0.6.0.tar.gz
Algorithm Hash digest
SHA256 7db64fb3f3c287eb861519b339e50ed9212331c8753d3255732def2959557994
MD5 92fa6dd76e5177b087fa810025f8f035
BLAKE2b-256 36f4b713c417fad1abc69d7bc5be0d6bbdb568e01f137215a02a51e16394c2ec

See more details on using hashes here.

File details

Details for the file sweatstack-0.6.0-py3-none-any.whl.

File metadata

  • Download URL: sweatstack-0.6.0-py3-none-any.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for sweatstack-0.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d5d2f6538ca355bc39c946ef81a63e72c6313ea1ad7290d4407685b157ca499d
MD5 878636b8b7f087fe1c121f9224505ac2
BLAKE2b-256 dab0a910ffdf78f176741ebf9e44857f1823cf6e414b1e8be2760c60fde115d9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page