Skip to main content

swiglpk - Simple swig bindings for the GNU Linear Programming Kit

Project description

Plain python bindings for the GNU Linear Programming Kit (GLPK)

PyPI License Build Status AppVeyor Status

Why?

swiglpk is not a high-level wrapper for GLPK (take a look at optlang if you are interested in a python-based mathematical programming language). It just provides plain vanilla swig bindings to the underlying C library. In constrast to other GLPK wrappers for python (e.g. PyGLPK, Python-GLPK, ctypes-glpk, ecyglpki etc.) it is fairly version agnostic: it will try to guess the location of the glpk.h header file (using which glpsol) and then compile the extension for your particular GLPK installation. Furthermore, swiglpk provides binary wheels for all major platforms, which are always up-to-date with the most recent GLPK version (swiglpk versions follow GLPK versioning in the major and minor version digits to emphasize that).

Please show us some love by staring this repo if you find swiglpk useful!

Installation

pip install swiglpk

That’s it. swiglpk comes with binary wheels for Windows, Mac, and Linux. No installation of third-party dependencies necessary.

Example

Running the following (slightly adapted) example from the GLPK manual

from swiglpk import *

ia = intArray(1+1000); ja = intArray(1+1000);
ar = doubleArray(1+1000);
lp = glp_create_prob();
glp_set_prob_name(lp, "sample");
glp_set_obj_dir(lp, GLP_MAX);
glp_add_rows(lp, 3);
glp_set_row_name(lp, 1, "p");
glp_set_row_bnds(lp, 1, GLP_UP, 0.0, 100.0);
glp_set_row_name(lp, 2, "q");
glp_set_row_bnds(lp, 2, GLP_UP, 0.0, 600.0);
glp_set_row_name(lp, 3, "r");
glp_set_row_bnds(lp, 3, GLP_UP, 0.0, 300.0);
glp_add_cols(lp, 3);
glp_set_col_name(lp, 1, "x1");
glp_set_col_bnds(lp, 1, GLP_LO, 0.0, 0.0);
glp_set_obj_coef(lp, 1, 10.0);
glp_set_col_name(lp, 2, "x2");
glp_set_col_bnds(lp, 2, GLP_LO, 0.0, 0.0);
glp_set_obj_coef(lp, 2, 6.0);
glp_set_col_name(lp, 3, "x3");
glp_set_col_bnds(lp, 3, GLP_LO, 0.0, 0.0);
glp_set_obj_coef(lp, 3, 4.0);
ia[1] = 1; ja[1] = 1; ar[1] = 1.0; # a[1,1] = 1
ia[2] = 1; ja[2] = 2; ar[2] = 1.0; # a[1,2] = 1
ia[3] = 1; ja[3] = 3; ar[3] = 1.0; # a[1,3] = 1
ia[4] = 2; ja[4] = 1; ar[4] = 10.0; # a[2,1] = 10
ia[5] = 3; ja[5] = 1; ar[5] = 2.0; # a[3,1] = 2
ia[6] = 2; ja[6] = 2; ar[6] = 4.0; # a[2,2] = 4
ia[7] = 3; ja[7] = 2; ar[7] = 2.0; # a[3,2] = 2
ia[8] = 2; ja[8] = 3; ar[8] = 5.0; # a[2,3] = 5
ia[9] = 3; ja[9] = 3; ar[9] = 6.0; # a[3,3] = 6
glp_load_matrix(lp, 9, ia, ja, ar);
glp_simplex(lp, None);
Z = glp_get_obj_val(lp);
x1 = glp_get_col_prim(lp, 1);
x2 = glp_get_col_prim(lp, 2);
x3 = glp_get_col_prim(lp, 3);
print("\nZ = %g; x1 = %g; x2 = %g; x3 = %g\n" % (Z, x1, x2, x3))
glp_delete_prob(lp);

… will produce the following output (the example can also be found at examples/example.py):

GLPK Simplex Optimizer, v4.52
3 rows, 3 columns, 9 non-zeros
*     0: obj =   0.000000000e+00  infeas =  0.000e+00 (0)
*     2: obj =   7.333333333e+02  infeas =  0.000e+00 (0)
OPTIMAL LP SOLUTION FOUND

Z = 733.333; x1 = 33.3333; x2 = 66.6667; x3 = 0

Pretty ugly right? Consider using optlang for formulating and solving your optimization problems.

Documentation

You can find documentation on GLPK’s C API here

Development

You still want to install it from source? Then you’ll need to install the following dependencies first.

  • GLPK

  • swig

If you’re on OS X, swig and GLPK can easily be installed with homebrew.

brew install swig glpk

If you’re using ubuntu linux, you can install swig and GLPK using apt-get.

apt-get install glpk-utils libglpk-dev swig

If you’re on Windows, you are on your own (checkout the appveyor.yml config file for directions).

Then clone the repo and run the following.

python setup.py install

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

swiglpk-5.0.0.tar.gz (32.2 kB view details)

Uploaded Source

Built Distributions

swiglpk-5.0.0-cp39-cp39-win_amd64.whl (566.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

swiglpk-5.0.0-cp39-cp39-win32.whl (456.3 kB view details)

Uploaded CPython 3.9 Windows x86

swiglpk-5.0.0-cp39-cp39-manylinux1_x86_64.whl (622.1 kB view details)

Uploaded CPython 3.9

swiglpk-5.0.0-cp39-cp39-manylinux1_i686.whl (567.3 kB view details)

Uploaded CPython 3.9

swiglpk-5.0.0-cp38-cp38-win_amd64.whl (546.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

swiglpk-5.0.0-cp38-cp38-win32.whl (442.1 kB view details)

Uploaded CPython 3.8 Windows x86

swiglpk-5.0.0-cp38-cp38-manylinux1_x86_64.whl (623.4 kB view details)

Uploaded CPython 3.8

swiglpk-5.0.0-cp38-cp38-manylinux1_i686.whl (568.4 kB view details)

Uploaded CPython 3.8

swiglpk-5.0.0-cp37-cp37m-win_amd64.whl (546.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

swiglpk-5.0.0-cp37-cp37m-win32.whl (441.8 kB view details)

Uploaded CPython 3.7m Windows x86

swiglpk-5.0.0-cp37-cp37m-manylinux1_x86_64.whl (623.2 kB view details)

Uploaded CPython 3.7m

swiglpk-5.0.0-cp37-cp37m-manylinux1_i686.whl (568.4 kB view details)

Uploaded CPython 3.7m

swiglpk-5.0.0-cp36-cp36m-win_amd64.whl (546.5 kB view details)

Uploaded CPython 3.6m Windows x86-64

swiglpk-5.0.0-cp36-cp36m-win32.whl (441.8 kB view details)

Uploaded CPython 3.6m Windows x86

swiglpk-5.0.0-cp36-cp36m-manylinux1_x86_64.whl (623.2 kB view details)

Uploaded CPython 3.6m

swiglpk-5.0.0-cp36-cp36m-manylinux1_i686.whl (568.4 kB view details)

Uploaded CPython 3.6m

swiglpk-5.0.0-cp27-cp27mu-manylinux1_x86_64.whl (623.2 kB view details)

Uploaded CPython 2.7mu

swiglpk-5.0.0-cp27-cp27mu-manylinux1_i686.whl (568.2 kB view details)

Uploaded CPython 2.7mu

swiglpk-5.0.0-cp27-cp27m-win_amd64.whl (528.0 kB view details)

Uploaded CPython 2.7m Windows x86-64

swiglpk-5.0.0-cp27-cp27m-win32.whl (430.0 kB view details)

Uploaded CPython 2.7m Windows x86

swiglpk-5.0.0-cp27-cp27m-manylinux1_x86_64.whl (623.2 kB view details)

Uploaded CPython 2.7m

swiglpk-5.0.0-cp27-cp27m-manylinux1_i686.whl (568.2 kB view details)

Uploaded CPython 2.7m

File details

Details for the file swiglpk-5.0.0.tar.gz.

File metadata

  • Download URL: swiglpk-5.0.0.tar.gz
  • Upload date:
  • Size: 32.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.3

File hashes

Hashes for swiglpk-5.0.0.tar.gz
Algorithm Hash digest
SHA256 7b1e30bc401ab1ed638253ac93da5757d47247bce390b0e614b6cddb8838d1f7
MD5 382b1c59e279234ddfc03ec14dd0d9b7
BLAKE2b-256 9b49260f20672b1f11138e240df219deb496ab9d17a5b8f623334b7e49e1e089

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: swiglpk-5.0.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 566.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.1

File hashes

Hashes for swiglpk-5.0.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 11dad84afb7dbbdc199c024c18813e5f053150b7b92a5023b104a24a070695ba
MD5 d2f986f27066df641aa8b40443793dff
BLAKE2b-256 04d25d8509dfb6a5618b30a0bb00b675f97023d577bf20d05c0220be7e087375

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: swiglpk-5.0.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 456.3 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.1

File hashes

Hashes for swiglpk-5.0.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 4ac6005f0a3528a75afeeac8c7177c9235643be1653446d8fa89b666a9ddf185
MD5 d8c2e6920b2c0d492dd4df3d10d68372
BLAKE2b-256 a9a33f6a51d345094f40dd9c761e710ca2ad1ba8893b8799432d0ae7efa4d227

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.0-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: swiglpk-5.0.0-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 622.1 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.3

File hashes

Hashes for swiglpk-5.0.0-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 74adf2a232033656c7b482c3db27b391260d12c114136473c566f87fa7c5494a
MD5 579dc34ce3323eef591e2ea016da0ae7
BLAKE2b-256 bd8540f1e6702f406fc91476a4968a26de81720d15cd27ea9177ed5cced6ad63

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.0-cp39-cp39-manylinux1_i686.whl.

File metadata

  • Download URL: swiglpk-5.0.0-cp39-cp39-manylinux1_i686.whl
  • Upload date:
  • Size: 567.3 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.3

File hashes

Hashes for swiglpk-5.0.0-cp39-cp39-manylinux1_i686.whl
Algorithm Hash digest
SHA256 3ce95e933e9997a8a8a37b3a3fef1896ac5d0208dc0ce5da2792b64c860e0760
MD5 5aa33637a63c4936225be2997464a89f
BLAKE2b-256 7cae4625f5d2ff031d4c52ba08b82738b87d96d6ff12e4c7988fa7b261540ef4

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: swiglpk-5.0.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 546.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.0

File hashes

Hashes for swiglpk-5.0.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5ca9fe0c409b800f2f391d2f0dd304eb001534289062fe38520663c08968d232
MD5 113e1cf5506d9d105663d47186b13293
BLAKE2b-256 a5fa9634faf7d839297780291f1f2c6f63c344d22f07b8a39a39bff49e54576c

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: swiglpk-5.0.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 442.1 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.0

File hashes

Hashes for swiglpk-5.0.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 fbb6c4cdfef9a97ea6c87353de6491dc979a3e85bea212c35dedef571d2a8546
MD5 63138fa0e139f1cd1ea81fed55d2f052
BLAKE2b-256 c00119c648edbf543578a4470223b7feec57b9d180080432ad1a872743ec3c2c

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: swiglpk-5.0.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 623.4 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.3

File hashes

Hashes for swiglpk-5.0.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0c9afe3de0608d136421b3b3ac38b00ef824626ce7fc64edc011e7071128283f
MD5 b0db08359fac3cb1adc72733df565377
BLAKE2b-256 c88852d83caee1fc97d67c9433e9cd0809c61f03849853944b9a434f3d2c3b6b

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.0-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: swiglpk-5.0.0-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 568.4 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.3

File hashes

Hashes for swiglpk-5.0.0-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 97cbbff22607bfa350cc64fb7e8f015fe468bee205a367df13ad7eee5064cd0b
MD5 1c903ac2098ddb31ae16b2ced2e89411
BLAKE2b-256 260a926c079d0319e106908097194c03f967408f87cf79aacb2d7283a747e8b9

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: swiglpk-5.0.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 546.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.7.5

File hashes

Hashes for swiglpk-5.0.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 034c4d1e535762b61db1bc299c56d269466a50ae0db12b96776ada616fdea9e0
MD5 6fe32a8b05e66d735126fb148eb14aea
BLAKE2b-256 9409d148d7ef05069d90a726eaedb49a6fcc601b9b16e1657bd080a09180dda0

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: swiglpk-5.0.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 441.8 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.7.5

File hashes

Hashes for swiglpk-5.0.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 0c3afffc6941ee2fdf43ef417092883cf0369e543ae14929aa8be7fba5ee7a8a
MD5 57979efc4b15a11894ee016e4f12231c
BLAKE2b-256 1d07884993f2e990739258e09048a2aa725b0f10b21c3ef5dda585d88a0e166c

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: swiglpk-5.0.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 623.2 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.3

File hashes

Hashes for swiglpk-5.0.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 bd06d6286bb44ca5aec97b0d9acf86343db99ff44e2f46861108bf85911395f0
MD5 8dbcac5ddd1ea3c4fbfcc82fec829070
BLAKE2b-256 faeb8379b5f44a4ac6639b1f13602b008c31fe109d81e119a1ae928c327c0ab4

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.0-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: swiglpk-5.0.0-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 568.4 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.3

File hashes

Hashes for swiglpk-5.0.0-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 7d02c63476329e7f78b7a9ff199796e1eee7b8185e656ce1d09fc73f6807a001
MD5 1088eaa3309b164e0308b5b3edc77638
BLAKE2b-256 83c6dac823b04343b6f49c03689308206bf3fc13e0f8e3016559af64ef4c1734

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: swiglpk-5.0.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 546.5 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.6.8

File hashes

Hashes for swiglpk-5.0.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 6554397ad8f371f5d71312618c2a41b3bc37e6981e03dcd7bc4c7508374a2560
MD5 5adb99b6cf89960bc965df28b45fd349
BLAKE2b-256 9f64563c46d2f22ef00f36d3c4d408a714bdea3a95ea0063a538302839a31c1a

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: swiglpk-5.0.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 441.8 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.6.8

File hashes

Hashes for swiglpk-5.0.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 8626910550d74549b4e64cd58d2273d46b5fa05939cabb400598ed7ce8807469
MD5 86735d092d26bb6973a6e6aaae59d9f8
BLAKE2b-256 9f645476a57f865940dc8e6562c3e9dff2de251401870348baf77cc5134d2a60

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: swiglpk-5.0.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 623.2 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.3

File hashes

Hashes for swiglpk-5.0.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d1ad6716f2c7082bd12bd35c67e8c468afd6eda10173653f05453735f160cb9a
MD5 24fa0078bf68398876ee1ac6713e2759
BLAKE2b-256 55f8302b6377ffac12620950c00a8b09980aac0aca8c02bc691d5fe1f89bc5c9

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: swiglpk-5.0.0-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 568.4 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.3

File hashes

Hashes for swiglpk-5.0.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 56cbb69fba8d4a8943089c4c591e19b7f7765c11f570788008e2af07ea61c771
MD5 db20c16ce420ce7a46f84cfc5a819881
BLAKE2b-256 f237e9409e80e287256b9826875df3137bf0d900541be9322a97bb4cc672b3c6

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: swiglpk-5.0.0-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 623.2 kB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.3

File hashes

Hashes for swiglpk-5.0.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b26632f45b967ce8909d1bb49dc6918e658d3e10c491ecac5a47c7632e047650
MD5 6aef00bb0d0240c541df616c23745b13
BLAKE2b-256 8d33b2aac56a17fe0a23b769e99ae8009e7e88ced4738c19404afccaf51aecf7

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.0-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: swiglpk-5.0.0-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 568.2 kB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.3

File hashes

Hashes for swiglpk-5.0.0-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 7cd6ba300c2f6e3f2cbbb866d602baa369b441a52ad42dad2dd6061906dca25e
MD5 a2c46ad0370c81bd3c09b7010978b621
BLAKE2b-256 75ad234ea07493cebe0159dbb5d082fb14d65b3db8969e875bcf4c2c32ce7f40

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.0-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: swiglpk-5.0.0-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 528.0 kB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.7.0 requests/2.25.1 setuptools/44.1.1 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/2.7.10

File hashes

Hashes for swiglpk-5.0.0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 b4e9591aa6cc72c3e9b102297c8e74343fd999fd7b10d2d8677448b7f3a76e94
MD5 ffdca6620c9e1b57b9ec197d37980e0d
BLAKE2b-256 84f815782d393a20cbdac3e2b287c48f444b1bac4a78a82378efd21c0e88f43b

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.0-cp27-cp27m-win32.whl.

File metadata

  • Download URL: swiglpk-5.0.0-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 430.0 kB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.7.0 requests/2.25.1 setuptools/44.1.1 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/2.7.10

File hashes

Hashes for swiglpk-5.0.0-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 90f29df4746f5c25feb7aae329c8e39b1d1c0e769191fa954d89702babc0d7b1
MD5 f2ebc45e8cb3c1a8fcf33c3a582ded78
BLAKE2b-256 afc6692204cb27398a64f31edf13b9f168c9ad3e061ebf00dff9eadb347411dc

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: swiglpk-5.0.0-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 623.2 kB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.3

File hashes

Hashes for swiglpk-5.0.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 dfbfe5273542fc77008f939ee80fb1b5712c6c35f27ecc741bef2edad8332b45
MD5 1e3dc1d7b7c7abfc7248c68511c5847b
BLAKE2b-256 5eeaf12890e5b36a11bc0592813380d5a12f7a7b80eee42c7e7ee968700fae9c

See more details on using hashes here.

File details

Details for the file swiglpk-5.0.0-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: swiglpk-5.0.0-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 568.2 kB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.8.3

File hashes

Hashes for swiglpk-5.0.0-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 bf99229631147c5e4bbacecd8a10ca200c9e30ee3ae3d8b78ba63806d5f072d2
MD5 c72449e16bc760e9f912067d9ed47630
BLAKE2b-256 51b9fb6ff06bee49162ab99c313522ac81823d3d8fb2637e1e6faee6278266cb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page