Solid Waste Optimization Life-cycle Framework in Python(SwolfPy)
Project description
Solid Waste Optimization Life-cycle Framework in Python(swolfpy)
Free software: GNU GENERAL PUBLIC LICENSE V2
Documentation: https://swolfpy.readthedocs.io.
Repository: https://bitbucket.org/swolfpy/swolfpy
Features
Life cycle assessment of Municipal Solid Waste (MSW) systems. Process models include Landfill, Waste-to-Energy (WTE), Composting, Anaerobic Digestion (AD), Single Stream Material Recovery Facility (MRF), Reprocessing, and Collection.
Monte Carlo simulation
Optimization
Installation
1- Download and install miniconda from: https://docs.conda.io/en/latest/miniconda.html
2- Update conda in a terminal window or anaconda prompt:
conda update conda
3- Add conda channels:
conda config --append channels conda-forge conda config --append channels cmutel conda config --append channels haasad
4- Create a new environment for PySWOLF:
conda create --name swolfpy python=3.7
5- Activate the environment:
conda activate swolfpy
6- Install PySWOLF in the environment:
pip install swolfpy
7- Open python to run swolfpy:
ipython
8- Run swolfpy in python:
from swolfpy import * swolfpy()
History
0.1.6 (2020-04-11)
Add Reporcessing. Revise Functional units. Reivse parameters class.
0.1.0 (2020-02-27)
First release on PyPI. Main functionality: LCA, Monte-Carlo, and Optimization. Process Models include LF, WTE, Composting, AD, SS_MRF nd Collection.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file swolfpy-0.1.7.tar.gz
.
File metadata
- Download URL: swolfpy-0.1.7.tar.gz
- Upload date:
- Size: 698.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fa6a3e3c2d98bac54dfb9289cd403e6b2f14503765fcec9b3f7f54c2e64f2221 |
|
MD5 | a50ae4ffa5b9d3f7ae6d7d87d7ac8092 |
|
BLAKE2b-256 | c8dd221f363ed0af45c20cc5f660421a6b979a185c333d6fd16b0bd71d34e0d1 |
File details
Details for the file swolfpy-0.1.7-py3-none-any.whl
.
File metadata
- Download URL: swolfpy-0.1.7-py3-none-any.whl
- Upload date:
- Size: 639.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6846f544e36e57cebc787862f4cb76b72fb329b68575a930d2829fc04a37ca8e |
|
MD5 | 0fa39ed927825debb43bf962725743a8 |
|
BLAKE2b-256 | 2c3f7ac9997cdaec758a3b18fd7096880343296728059ce6ff2cf58361b5fd21 |