Skip to main content

A Library for Private, Secure Deep Learning

Project description

# Introduction

[![Binder](https://mybinder.org/badge.svg)](https://mybinder.org/v2/gh/OpenMined/PySyft/master) [![Build Status](https://travis-ci.org/OpenMined/PySyft.svg?branch=torch_1)](https://travis-ci.org/OpenMined/PySyft) [![Chat on Slack](https://img.shields.io/badge/chat-on%20slack-7A5979.svg)](https://openmined.slack.com/messages/team_pysyft) [![FOSSA Status](https://app.fossa.io/api/projects/git%2Bgithub.com%2Fmatthew-mcateer%2FPySyft.svg?type=small)](https://app.fossa.io/projects/git%2Bgithub.com%2Fmatthew-mcateer%2FPySyft?ref=badge_small)

PySyft is a Python library for secure, private Deep Learning. PySyft decouples private data from model training, using [Multi-Party Computation (MPC)](https://en.wikipedia.org/wiki/Secure_multi-party_computation) within PyTorch. Join the movement on [Slack](http://slack.openmined.org/).

## PySyft in Detail

A more detailed explanation of PySyft can be found in the [paper on arxiv](https://arxiv.org/abs/1811.04017)

PySyft has also been explained in video form by [Siraj Ravel](https://www.youtube.com/watch?v=39hNjnhY7cY&feature=youtu.be&a=)

## Installation

> PySyft supports Python >= 3.6 and PyTorch 1.0.0

`bash pip3 install -r requirements.txt python3 setup.py install ` ## Run Local Notebook Server All the examples can be played with by running the command `bash make notebook ` and selecting the pysyft kernel

## Try out the Tutorials

A comprehensive list of tutorials can be found [here](https://github.com/OpenMined/PySyft/tree/torch_1/tutorials/)

These tutorials cover how to perform techniques such as federated learning and differential privacy using PySyft.

## Start Contributing

The guide for contributors can be found [here](https://github.com/OpenMined/PySyft/tree/torch_1/CONTRIBUTING.md). It covers all that you need to know to start contributing code to PySyft in an easy way.

Also join the rapidly growing community of 2500+ on [Slack](http://slack.openmined.org). The slack community is very friendly and great about quickly answering questions about the use and development of PySyft!

## Organizational Contributions

We are very grateful for contributions to PySyft from the following organizations!

![drawing](https://raw.githubusercontent.com/coMindOrg/federated-averaging-tutorials/master/images/comindorg_logo.png)

[coMind Website](https://comind.org/) & [coMind Github](https://github.com/coMindOrg/federated-averaging-tutorials)

## Disclaimer

Do NOT use this code to protect data (private or otherwise) - at present it is very insecure.

## License

[Apache License 2.0](https://github.com/OpenMined/PySyft/blob/master/LICENSE)

[![FOSSA Status](https://app.fossa.io/api/projects/git%2Bgithub.com%2Fmatthew-mcateer%2FPySyft.svg?type=large)](https://app.fossa.io/projects/git%2Bgithub.com%2Fmatthew-mcateer%2FPySyft?ref=badge_large)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

syft-0.1.0a1.tar.gz (57.2 kB view details)

Uploaded Source

Built Distribution

syft-0.1.0a1-py3-none-any.whl (75.4 kB view details)

Uploaded Python 3

File details

Details for the file syft-0.1.0a1.tar.gz.

File metadata

  • Download URL: syft-0.1.0a1.tar.gz
  • Upload date:
  • Size: 57.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.18.4 setuptools/40.7.3 requests-toolbelt/0.9.1 tqdm/4.19.5 CPython/3.6.1

File hashes

Hashes for syft-0.1.0a1.tar.gz
Algorithm Hash digest
SHA256 ce5af7c4407f559cff8c51d7fbaa397d087153809003021ec4acc0c818909d28
MD5 d1fe5eb89cd04ba980a9f4ed5983ad90
BLAKE2b-256 2eb5a1e454670bf1dd4edaca42306ba8e2497211b02a5d9324f0b73e7019aae1

See more details on using hashes here.

File details

Details for the file syft-0.1.0a1-py3-none-any.whl.

File metadata

  • Download URL: syft-0.1.0a1-py3-none-any.whl
  • Upload date:
  • Size: 75.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.18.4 setuptools/40.7.3 requests-toolbelt/0.9.1 tqdm/4.19.5 CPython/3.6.1

File hashes

Hashes for syft-0.1.0a1-py3-none-any.whl
Algorithm Hash digest
SHA256 84590a5c79719adac8239d381310149c314beae96ec6f140f20f80227522a25f
MD5 6aaad710a515c033963fb212568a58ed
BLAKE2b-256 1b40be665b9d82ffd0be1072e64c92a6e4d67f35c6da92a1b4f7b8dacd088982

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page