Skip to main content

T5 Summarisation Using Pytorch Lightning

Project description


title: T5-Summarisation emoji: ✌ colorFrom: yellow colorTo: red sdk: streamlit app_file: src/visualization/visualize.py pinned: false

summarization

T5 Summarisation Using Pytorch Lightning

Instructions

  1. Clone the repo.
  2. Edit the params.yml to change the parameters to train the model.
  3. Run make dirs to create the missing parts of the directory structure described below.
  4. Optional: Run make virtualenv to create a python virtual environment. Skip if using conda or some other env manager.
    1. Run source env/bin/activate to activate the virtualenv.
  5. Run make requirements to install required python packages.
  6. Process your data, train and evaluate your model using make run
  7. When you're happy with the result, commit files (including .dvc files) to git.

Project Organization

├── LICENSE
├── Makefile           <- Makefile with commands like `make dirs` or `make clean`
├── README.md          <- The top-level README for developers using this project.
├── data
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.
│
├── models             <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
│                         the creator's initials, and a short `-` delimited description, e.g.
│                         `1.0-jqp-initial-data-exploration`.
├── references         <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── metrics.txt    <- Relevant metrics after evaluating the model.
│   └── training_metrics.txt    <- Relevant metrics from training the model.
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment
│
├── setup.py           <- makes project pip installable (pip install -e .) so src can be imported
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── data           <- Scripts to download or generate data
│   │   └── make_dataset.py
│   │   └── process_data.py
│   │
│   ├── models         <- Scripts to train models 
│   │   ├── predict_model.py
│   │   └── train_model.py
│   │   └── evaluate_model.py
│   │   └── model.py
│   │
│   └── visualization  <- Scripts to create exploratory and results oriented visualizations
│       └── visualize.py
│
├── tox.ini            <- tox file with settings for running tox; see tox.testrun.org
└── data.dvc          <- Traing a model on the processed data.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

t5s-0.1.5.tar.gz (9.3 kB view details)

Uploaded Source

Built Distribution

t5s-0.1.5-py3-none-any.whl (10.0 kB view details)

Uploaded Python 3

File details

Details for the file t5s-0.1.5.tar.gz.

File metadata

  • Download URL: t5s-0.1.5.tar.gz
  • Upload date:
  • Size: 9.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.7.9

File hashes

Hashes for t5s-0.1.5.tar.gz
Algorithm Hash digest
SHA256 a0f44d3f61e1e39727cb651506348c2f16501a1a3545dc85fa93842d89314369
MD5 8b07bc7658ba61c0173acb481f9d900d
BLAKE2b-256 b4733ccb490ffcb935305a25696de4f93ccf737534c046bb91aa1387714d166e

See more details on using hashes here.

File details

Details for the file t5s-0.1.5-py3-none-any.whl.

File metadata

  • Download URL: t5s-0.1.5-py3-none-any.whl
  • Upload date:
  • Size: 10.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.7.9

File hashes

Hashes for t5s-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 703850f0de8c1dd5c8a6a9289f9d3a0ceaf89d0556d51c92ad4c22009da87204
MD5 d15a53b2ea0f23c3dd1c4ad90988908f
BLAKE2b-256 fbfd312c23f8a0e1c30ee2f63663d1a542bb4894cbf37af307c89652d138e6b8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page