T5 Summarisation Using Pytorch Lightning
Project description
title: T5-Summarisation emoji: ✌ colorFrom: yellow colorTo: red sdk: streamlit app_file: src/visualization/visualize.py pinned: false
summarization
T5 Summarisation Using Pytorch Lightning
Instructions
- Clone the repo.
- Edit the
params.yml
to change the parameters to train the model. - Run
make dirs
to create the missing parts of the directory structure described below. - Optional: Run
make virtualenv
to create a python virtual environment. Skip if using conda or some other env manager.- Run
source env/bin/activate
to activate the virtualenv.
- Run
- Run
make requirements
to install required python packages. - Process your data, train and evaluate your model using
make run
- When you're happy with the result, commit files (including .dvc files) to git.
Project Organization
├── LICENSE
├── Makefile <- Makefile with commands like `make dirs` or `make clean`
├── README.md <- The top-level README for developers using this project.
├── data
│  ├── processed <- The final, canonical data sets for modeling.
│  └── raw <- The original, immutable data dump.
│
├── models <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
│ the creator's initials, and a short `-` delimited description, e.g.
│ `1.0-jqp-initial-data-exploration`.
├── references <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports <- Generated analysis as HTML, PDF, LaTeX, etc.
│  └── metrics.txt <- Relevant metrics after evaluating the model.
│  └── training_metrics.txt <- Relevant metrics from training the model.
│
├── requirements.txt <- The requirements file for reproducing the analysis environment
│
├── setup.py <- makes project pip installable (pip install -e .) so src can be imported
├── src <- Source code for use in this project.
│  ├── __init__.py <- Makes src a Python module
│ │
│  ├── data <- Scripts to download or generate data
│  │  └── make_dataset.py
│  │  └── process_data.py
│ │
│  ├── models <- Scripts to train models
│  │  ├── predict_model.py
│  │  └── train_model.py
│  │  └── evaluate_model.py
│  │  └── model.py
│ │
│  └── visualization <- Scripts to create exploratory and results oriented visualizations
│  └── visualize.py
│
├── tox.ini <- tox file with settings for running tox; see tox.testrun.org
└── data.dvc <- Traing a model on the processed data.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
t5s-0.1.5.tar.gz
(9.3 kB
view details)
Built Distribution
t5s-0.1.5-py3-none-any.whl
(10.0 kB
view details)
File details
Details for the file t5s-0.1.5.tar.gz
.
File metadata
- Download URL: t5s-0.1.5.tar.gz
- Upload date:
- Size: 9.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.7.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a0f44d3f61e1e39727cb651506348c2f16501a1a3545dc85fa93842d89314369 |
|
MD5 | 8b07bc7658ba61c0173acb481f9d900d |
|
BLAKE2b-256 | b4733ccb490ffcb935305a25696de4f93ccf737534c046bb91aa1387714d166e |
File details
Details for the file t5s-0.1.5-py3-none-any.whl
.
File metadata
- Download URL: t5s-0.1.5-py3-none-any.whl
- Upload date:
- Size: 10.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.7.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 703850f0de8c1dd5c8a6a9289f9d3a0ceaf89d0556d51c92ad4c22009da87204 |
|
MD5 | d15a53b2ea0f23c3dd1c4ad90988908f |
|
BLAKE2b-256 | fbfd312c23f8a0e1c30ee2f63663d1a542bb4894cbf37af307c89652d138e6b8 |