Skip to main content

T5 Summarisation Using Pytorch Lightning

Project description


title: T5-Summarisation emoji: ✌ colorFrom: yellow colorTo: red sdk: streamlit app_file: src/visualization/visualize.py pinned: false

summarization

T5 Summarisation Using Pytorch Lightning

Instructions

  1. Clone the repo.
  2. Edit the params.yml to change the parameters to train the model.
  3. Run make dirs to create the missing parts of the directory structure described below.
  4. Optional: Run make virtualenv to create a python virtual environment. Skip if using conda or some other env manager.
    1. Run source env/bin/activate to activate the virtualenv.
  5. Run make requirements to install required python packages.
  6. Process your data, train and evaluate your model using make run
  7. When you're happy with the result, commit files (including .dvc files) to git.

Project Organization

├── LICENSE
├── Makefile           <- Makefile with commands like `make dirs` or `make clean`
├── README.md          <- The top-level README for developers using this project.
├── data
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.
│
├── models             <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
│                         the creator's initials, and a short `-` delimited description, e.g.
│                         `1.0-jqp-initial-data-exploration`.
├── references         <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── metrics.txt    <- Relevant metrics after evaluating the model.
│   └── training_metrics.txt    <- Relevant metrics from training the model.
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment
│
├── setup.py           <- makes project pip installable (pip install -e .) so src can be imported
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── data           <- Scripts to download or generate data
│   │   └── make_dataset.py
│   │   └── process_data.py
│   │
│   ├── models         <- Scripts to train models 
│   │   ├── predict_model.py
│   │   └── train_model.py
│   │   └── evaluate_model.py
│   │   └── model.py
│   │
│   └── visualization  <- Scripts to create exploratory and results oriented visualizations
│       └── visualize.py
│
├── tox.ini            <- tox file with settings for running tox; see tox.testrun.org
└── data.dvc          <- Traing a model on the processed data.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

t5s-0.1.7.tar.gz (3.1 kB view details)

Uploaded Source

Built Distribution

t5s-0.1.7-py3-none-any.whl (3.6 kB view details)

Uploaded Python 3

File details

Details for the file t5s-0.1.7.tar.gz.

File metadata

  • Download URL: t5s-0.1.7.tar.gz
  • Upload date:
  • Size: 3.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.7.9

File hashes

Hashes for t5s-0.1.7.tar.gz
Algorithm Hash digest
SHA256 9bdbd8da5d0ef4075b9479d2872c44016fe45310dcc611faa318183cbe012628
MD5 ceeeb530dc468dadd7b6a1c7772c5b04
BLAKE2b-256 87544a0f4b6e442fe4172d6e3f2f2db6011fd6a5b600ba8a16341e41423b53a4

See more details on using hashes here.

File details

Details for the file t5s-0.1.7-py3-none-any.whl.

File metadata

  • Download URL: t5s-0.1.7-py3-none-any.whl
  • Upload date:
  • Size: 3.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.7.9

File hashes

Hashes for t5s-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 b8ace6094914d9b0dbbbf06aea3d577ab7d2c598057bfebb2e6987a42301f38b
MD5 f07da942507ca78d3298d5ee5ca2db2b
BLAKE2b-256 576896b077c3354d4c9eed4f695a0d2d9af0db5e75eb1be6eb674a92390f204a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page