Skip to main content

T5 Summarisation Using Pytorch Lightning

Project description


title: T5-Summarisation emoji: ✌ colorFrom: yellow colorTo: red sdk: streamlit app_file: src/visualization/visualize.py pinned: false

summarization

T5 Summarisation Using Pytorch Lightning

Instructions

  1. Clone the repo.
  2. Edit the params.yml to change the parameters to train the model.
  3. Run make dirs to create the missing parts of the directory structure described below.
  4. Optional: Run make virtualenv to create a python virtual environment. Skip if using conda or some other env manager.
    1. Run source env/bin/activate to activate the virtualenv.
  5. Run make requirements to install required python packages.
  6. Process your data, train and evaluate your model using make run
  7. When you're happy with the result, commit files (including .dvc files) to git.

Project Organization

├── LICENSE
├── Makefile           <- Makefile with commands like `make dirs` or `make clean`
├── README.md          <- The top-level README for developers using this project.
├── data
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.
│
├── models             <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
│                         the creator's initials, and a short `-` delimited description, e.g.
│                         `1.0-jqp-initial-data-exploration`.
├── references         <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── metrics.txt    <- Relevant metrics after evaluating the model.
│   └── training_metrics.txt    <- Relevant metrics from training the model.
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment
│
├── setup.py           <- makes project pip installable (pip install -e .) so src can be imported
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── data           <- Scripts to download or generate data
│   │   └── make_dataset.py
│   │   └── process_data.py
│   │
│   ├── models         <- Scripts to train models 
│   │   ├── predict_model.py
│   │   └── train_model.py
│   │   └── evaluate_model.py
│   │   └── model.py
│   │
│   └── visualization  <- Scripts to create exploratory and results oriented visualizations
│       └── visualize.py
│
├── tox.ini            <- tox file with settings for running tox; see tox.testrun.org
└── data.dvc          <- Traing a model on the processed data.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

t5s-0.1.8.tar.gz (10.2 kB view details)

Uploaded Source

Built Distribution

t5s-0.1.8-py3-none-any.whl (17.6 kB view details)

Uploaded Python 3

File details

Details for the file t5s-0.1.8.tar.gz.

File metadata

  • Download URL: t5s-0.1.8.tar.gz
  • Upload date:
  • Size: 10.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.7.9

File hashes

Hashes for t5s-0.1.8.tar.gz
Algorithm Hash digest
SHA256 f979f3823e2c3f3511e2eb1448c18d8dc5ec4560aa0e38e256c34722f2e8dac0
MD5 46db9002e93fafc655dfe356b6e3882c
BLAKE2b-256 fa2f83cd6a9f08f3d297633620951491692b2962709f6899c6942173772f5f9b

See more details on using hashes here.

File details

Details for the file t5s-0.1.8-py3-none-any.whl.

File metadata

  • Download URL: t5s-0.1.8-py3-none-any.whl
  • Upload date:
  • Size: 17.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.7.9

File hashes

Hashes for t5s-0.1.8-py3-none-any.whl
Algorithm Hash digest
SHA256 20d41b0260366a79570a5ae06bddca177b991db679a36bc74b95c1225f7fffb4
MD5 4a6eb5feddf75b5c7e7ff1bf48bda9ee
BLAKE2b-256 715ae8bf7f236d8b4caa13fd8718166c02825268a233b41484d1536c9fb10106

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page