Skip to main content

T5 Summarisation Using Pytorch Lightning

Project description


title: T5-Summarisation emoji: ✌ colorFrom: yellow colorTo: red sdk: streamlit app_file: src/visualization/visualize.py pinned: false

summarization

T5 Summarisation Using Pytorch Lightning

Instructions

  1. Clone the repo.
  2. Edit the params.yml to change the parameters to train the model.
  3. Run make dirs to create the missing parts of the directory structure described below.
  4. Optional: Run make virtualenv to create a python virtual environment. Skip if using conda or some other env manager.
    1. Run source env/bin/activate to activate the virtualenv.
  5. Run make requirements to install required python packages.
  6. Process your data, train and evaluate your model using make run
  7. When you're happy with the result, commit files (including .dvc files) to git.

Project Organization

├── LICENSE
├── Makefile           <- Makefile with commands like `make dirs` or `make clean`
├── README.md          <- The top-level README for developers using this project.
├── data
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.
│
├── models             <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
│                         the creator's initials, and a short `-` delimited description, e.g.
│                         `1.0-jqp-initial-data-exploration`.
├── references         <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── metrics.txt    <- Relevant metrics after evaluating the model.
│   └── training_metrics.txt    <- Relevant metrics from training the model.
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment
│
├── setup.py           <- makes project pip installable (pip install -e .) so src can be imported
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── data           <- Scripts to download or generate data
│   │   └── make_dataset.py
│   │   └── process_data.py
│   │
│   ├── models         <- Scripts to train models 
│   │   ├── predict_model.py
│   │   └── train_model.py
│   │   └── evaluate_model.py
│   │   └── model.py
│   │
│   └── visualization  <- Scripts to create exploratory and results oriented visualizations
│       └── visualize.py
│
├── tox.ini            <- tox file with settings for running tox; see tox.testrun.org
└── data.dvc          <- Traing a model on the processed data.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

t5s-1.0.0.tar.gz (10.2 kB view details)

Uploaded Source

Built Distribution

t5s-1.0.0-py3-none-any.whl (17.7 kB view details)

Uploaded Python 3

File details

Details for the file t5s-1.0.0.tar.gz.

File metadata

  • Download URL: t5s-1.0.0.tar.gz
  • Upload date:
  • Size: 10.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.7.9

File hashes

Hashes for t5s-1.0.0.tar.gz
Algorithm Hash digest
SHA256 dc3e48a987f31a266d6654f803043dd34bba08ec2eda7d209ceb52b75a688c02
MD5 f41a59515327ee2fe93c1224e71185ce
BLAKE2b-256 182e298086ba46b37d5dbb4d514e8e0acf8e7cd65c270e69b878ae2b18757f0e

See more details on using hashes here.

File details

Details for the file t5s-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: t5s-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 17.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.7.9

File hashes

Hashes for t5s-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 7aef6ef5580dc389fbc2fb3e9ee65175928fa59af2f035956f145463139a2f52
MD5 aa6996e3b666190b1fd98058444d111e
BLAKE2b-256 5356a7c6651c2b5983d5673f380c3b2196526ea52bfda1d3d7ff47b90ad16bee

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page