Skip to main content

Torch autodiff DFT-D3 implementation

Project description

Release PyPI Apache-2.0 CI Documentation Status Coverage

Implementation of the DFT-D3 dispersion model in PyTorch. This module allows to process a single structure or a batch of structures for the calculation of atom-resolved dispersion energies.

For details on the D3 dispersion model see

  • J. Chem. Phys., 2010, 132, 154104 (DOI)

  • J. Comput. Chem., 2011, 32, 1456 (DOI)

For alternative implementations also check out

simple-dftd3:

Simple reimplementation of the DFT-D3 dispersion model in Fortran with Python bindings

torch-dftd:

PyTorch implementation of DFT-D2 and DFT-D3

dispax:

Implementation of the DFT-D3 dispersion model in Jax M.D.

Installation

This project is hosted on GitHub at dftd3/tad-dftd3. Obtain the source by cloning the repository with

git clone https://github.com/dftd3/tad-dftd3
cd tad-dftd3

We recommend using a conda environment to install the package. You can setup the environment manager using a mambaforge installer. Install the required dependencies from the conda-forge channel.

mamba env create -n torch -f environment.yml
mamba activate torch

Install this project with pip in the environment

pip install .

Add the option -e for installing in development mode.

The following dependencies are required

You can check your installation by running the test suite with

pytest tests/ --pyargs tad_dftd3 --doctest-modules

Example

The following example shows how to calculate the DFT-D3 dispersion energy for a single structure.

import torch
import tad_dftd3 as d3

numbers = d3.util.to_number(symbols="C C C C N C S H H H H H".split())
positions = torch.Tensor(
    [
        [-2.56745685564671, -0.02509985979910, 0.00000000000000],
        [-1.39177582455797, +2.27696188880014, 0.00000000000000],
        [+1.27784995624894, +2.45107479759386, 0.00000000000000],
        [+2.62801937615793, +0.25927727028120, 0.00000000000000],
        [+1.41097033661123, -1.99890996077412, 0.00000000000000],
        [-1.17186102298849, -2.34220576284180, 0.00000000000000],
        [-2.39505990368378, -5.22635838332362, 0.00000000000000],
        [+2.41961980455457, -3.62158019253045, 0.00000000000000],
        [-2.51744374846065, +3.98181713686746, 0.00000000000000],
        [+2.24269048384775, +4.24389473203647, 0.00000000000000],
        [+4.66488984573956, +0.17907568006409, 0.00000000000000],
        [-4.60044244782237, -0.17794734637413, 0.00000000000000],
    ]
)
param = dict(a1=0.49484001, s8=0.78981345, a2=5.73083694)

energy = d3.dftd3(numbers, positions, param)

torch.set_printoptions(precision=10)
print(energy)
# tensor([-0.0004075971, -0.0003940886, -0.0003817684, -0.0003949536,
#         -0.0003577212, -0.0004110279, -0.0005385976, -0.0001808242,
#         -0.0001563670, -0.0001503394, -0.0001577045, -0.0001764488])

The next example shows the calculation of dispersion energies for a batch of structures, while retaining access to all intermediates used for calculating the dispersion energy.

import torch
import tad_dftd3 as d3

sample1 = dict(
    numbers=d3.util.to_number("Pb H H H H Bi H H H".split()),
    positions=torch.tensor(
        [
            [-0.00000020988889, -4.98043478877778, +0.00000000000000],
            [+3.06964045311111, -6.06324400177778, +0.00000000000000],
            [-1.53482054188889, -6.06324400177778, -2.65838526500000],
            [-1.53482054188889, -6.06324400177778, +2.65838526500000],
            [-0.00000020988889, -1.72196703577778, +0.00000000000000],
            [-0.00000020988889, +4.77334244722222, +0.00000000000000],
            [+1.35700257511111, +6.70626379422222, -2.35039772300000],
            [-2.71400388988889, +6.70626379422222, +0.00000000000000],
            [+1.35700257511111, +6.70626379422222, +2.35039772300000],
        ]
    ),
)
sample2 = dict(
    numbers=d3.util.to_number("C C C C C C I H H H H H S H C H H H".split(" ")),
    positions=torch.tensor(
        [
            [-1.42754169820131, -1.50508961850828, -1.93430551124333],
            [+1.19860572924150, -1.66299114873979, -2.03189643761298],
            [+2.65876001301880, +0.37736955363609, -1.23426391650599],
            [+1.50963368042358, +2.57230374419743, -0.34128058818180],
            [-1.12092277855371, +2.71045691257517, -0.25246348639234],
            [-2.60071517756218, +0.67879949508239, -1.04550707592673],
            [-2.86169588073340, +5.99660765711210, +1.08394899986031],
            [+2.09930989272956, -3.36144811062374, -2.72237695164263],
            [+2.64405246349916, +4.15317840474646, +0.27856972788526],
            [+4.69864865613751, +0.26922271535391, -1.30274048619151],
            [-4.63786461351839, +0.79856258572808, -0.96906659938432],
            [-2.57447518692275, -3.08132039046931, -2.54875517521577],
            [-5.88211879210329, 11.88491819358157, +2.31866455902233],
            [-8.18022701418703, 10.95619984550779, +1.83940856333092],
            [-5.08172874482867, 12.66714386256482, -0.92419491629867],
            [-3.18311711399702, 13.44626574330220, -0.86977613647871],
            [-5.07177399637298, 10.99164969235585, -2.10739192258756],
            [-6.35955320518616, 14.08073002965080, -1.68204314084441],
        ]
    ),
)
numbers = d3.util.pack(
    (
        sample1["numbers"],
        sample2["numbers"],
    )
)
positions = d3.util.pack(
    (
        sample1["positions"],
        sample2["positions"],
    )
)
ref = d3.reference.Reference()
rcov = d3.data.covalent_rad_d3[numbers]
rvdw = d3.data.vdw_rad_d3[numbers.unsqueeze(-1), numbers.unsqueeze(-2)]
r4r2 = d3.data.sqrt_z_r4_over_r2[numbers]
param = dict(a1=0.49484001, s8=0.78981345, a2=5.73083694)

cn = d3.ncoord.coordination_number(numbers, positions, rcov, d3.ncoord.exp_count)
weights = d3.model.weight_references(numbers, cn, ref, d3.model.gaussian_weight)
c6 = d3.model.atomic_c6(numbers, weights, ref)
energy = d3.disp.dispersion(
    numbers, positions, c6, rvdw, r4r2, d3.disp.rational_damping, **param
)

torch.set_printoptions(precision=10)
print(torch.sum(energy, dim=-1))
# tensor([-0.0014092578, -0.0057840119])

Contributing

This is a volunteer open source projects and contributions are always welcome. Please, take a moment to read the contributing guidelines.

License

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “as is” basis, without warranties or conditions of any kind, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in this project by you, as defined in the Apache-2.0 license, shall be licensed as above, without any additional terms or conditions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tad-dftd3-0.0.2.tar.gz (227.1 kB view details)

Uploaded Source

Built Distribution

tad_dftd3-0.0.2-py3-none-any.whl (229.7 kB view details)

Uploaded Python 3

File details

Details for the file tad-dftd3-0.0.2.tar.gz.

File metadata

  • Download URL: tad-dftd3-0.0.2.tar.gz
  • Upload date:
  • Size: 227.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 CPython/3.8.13

File hashes

Hashes for tad-dftd3-0.0.2.tar.gz
Algorithm Hash digest
SHA256 636eac6d7fb1f70005a102d7cff0d00df15a4dd5e8b90dbb8c274054b703c429
MD5 f505ffdaa08942899e313c5505658ae8
BLAKE2b-256 b67d776cb3fabab89172d2881ef7ceed3765ad423821dcb50972065f72a058af

See more details on using hashes here.

File details

Details for the file tad_dftd3-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: tad_dftd3-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 229.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 CPython/3.8.13

File hashes

Hashes for tad_dftd3-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 68509ac058afaf8f29da322e9a3a5e94de91d7e64b687a5e8ab3ea1589114d77
MD5 5e9d122eab9104de10416093f0615b26
BLAKE2b-256 2b8a70cf0123f089107a4f23e49bfbb55ba8f27bc2d4fe4462bef39c76286470

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page