Skip to main content

Torch Autodiff Utility

Project description

Torch Autodiff Utility

Compatibility: Python Versions PyTorch Versions
Availability: Release PyPI Apache-2.0
Status: Test Status Build Status Documentation Status pre-commit.ci Status Coverage

This library is a collection of utility functions that are used in PyTorch (re-)implementations of projects from the Grimme group. In particular, the tad-mctc library provides:

  • autograd functions (Jacobian, Hessian)

  • batch utility (packing, masks, ...)

  • atomic data (radii, EN, example molecules, ...)

  • io (reading coordinate files)

  • coordination numbers

  • safeops (autograd-safe implementations of common functions)

  • typing (base class for tensor-like behavior of arbitrary classes)

  • units

The name is inspired by the Fortran pendant "modular computation tool chain library" (mctc-lib).

Installation

pip

tad-mctc can easily be installed with pip.

pip install tad-mctc

From source

This project is hosted on GitHub at tad-mctc/tad-mctc. Obtain the source by cloning the repository with

git clone https://github.com/tad-mctc/tad-mctc
cd tad-mctc

We recommend using a conda environment to install the package. You can setup the environment manager using a mambaforge installer. Install the required dependencies from the conda-forge channel.

mamba env create -n torch -f environment.yaml
mamba activate torch

Install this project with pip in the environment

pip install .

The following dependencies are required

Development

For development, additionally install the following tools in your environment.

mamba install black covdefaults mypy pre-commit pylint pytest pytest-cov pytest-xdist tox
pip install pytest-random-order

With pip, add the option -e for installing in development mode, and add [dev] for the development dependencies

pip install -e .[dev]

The pre-commit hooks are initialized by running the following command in the root of the repository.

pre-commit install

For testing all Python environments, simply run tox.

tox

Note that this randomizes the order of tests but skips "large" tests. To modify this behavior, tox has to skip the optional posargs.

tox -- test

Examples

The following example shows how to calculate the coordination number used in the EEQ model for a single structure.

import torch
import tad_mctc as mctc

numbers = mctc.convert.symbol_to_number(symbols="C C C C N C S H H H H H".split())

# coordinates in Bohr
positions = torch.tensor(
    [
        [-2.56745685564671, -0.02509985979910, 0.00000000000000],
        [-1.39177582455797, +2.27696188880014, 0.00000000000000],
        [+1.27784995624894, +2.45107479759386, 0.00000000000000],
        [+2.62801937615793, +0.25927727028120, 0.00000000000000],
        [+1.41097033661123, -1.99890996077412, 0.00000000000000],
        [-1.17186102298849, -2.34220576284180, 0.00000000000000],
        [-2.39505990368378, -5.22635838332362, 0.00000000000000],
        [+2.41961980455457, -3.62158019253045, 0.00000000000000],
        [-2.51744374846065, +3.98181713686746, 0.00000000000000],
        [+2.24269048384775, +4.24389473203647, 0.00000000000000],
        [+4.66488984573956, +0.17907568006409, 0.00000000000000],
        [-4.60044244782237, -0.17794734637413, 0.00000000000000],
    ]
)

# calculate EEQ coordination number
cn = mctc.ncoord.cn_eeq(numbers, positions)
torch.set_printoptions(precision=10)
print(cn)
# tensor([3.0519218445, 3.0177774429, 3.0132560730, 3.0197706223,
#         3.0779352188, 3.0095663071, 1.0991339684, 0.9968624115,
#         0.9943327904, 0.9947233200, 0.9945874214, 0.9945726395])

The next example shows the calculation of the coordination number used in DFT-D4 for a batch of structures.

import torch
import tad_mctc as mctc

# S22 system 4: formamide dimer
numbers = mctc.batch.pack((
    mctc.convert.symbol_to_number("C C N N H H H H H H O O".split()),
    mctc.convert.symbol_to_number("C O N H H H".split()),
))

# coordinates in Bohr
positions = mctc.batch.pack((
    torch.tensor([
        [-3.81469488143921, +0.09993441402912, 0.00000000000000],
        [+3.81469488143921, -0.09993441402912, 0.00000000000000],
        [-2.66030049324036, -2.15898251533508, 0.00000000000000],
        [+2.66030049324036, +2.15898251533508, 0.00000000000000],
        [-0.73178529739380, -2.28237795829773, 0.00000000000000],
        [-5.89039325714111, -0.02589114569128, 0.00000000000000],
        [-3.71254944801331, -3.73605775833130, 0.00000000000000],
        [+3.71254944801331, +3.73605775833130, 0.00000000000000],
        [+0.73178529739380, +2.28237795829773, 0.00000000000000],
        [+5.89039325714111, +0.02589114569128, 0.00000000000000],
        [-2.74426102638245, +2.16115570068359, 0.00000000000000],
        [+2.74426102638245, -2.16115570068359, 0.00000000000000],
    ]),
    torch.tensor([
        [-0.55569743203406, +1.09030425468557, 0.00000000000000],
        [+0.51473634678469, +3.15152550263611, 0.00000000000000],
        [+0.59869690244446, -1.16861263789477, 0.00000000000000],
        [-0.45355203669134, -2.74568780438064, 0.00000000000000],
        [+2.52721209544999, -1.29200800956867, 0.00000000000000],
        [-2.63139587595376, +0.96447869452240, 0.00000000000000],
    ]),
))

# calculate coordination number
cn = mctc.ncoord.cn_d4(numbers, positions)
torch.set_printoptions(precision=10)
print(cn)
# tensor([[2.6886456013, 2.6886456013, 2.6314170361, 2.6314167976,
#          0.8594539165, 0.9231414795, 0.8605306745, 0.8605306745,
#          0.8594539165, 0.9231414795, 0.8568341732, 0.8568341732],
#         [2.6886456013, 0.8568335176, 2.6314167976, 0.8605306745,
#          0.8594532013, 0.9231414795, 0.0000000000, 0.0000000000,
#          0.0000000000, 0.0000000000, 0.0000000000, 0.0000000000]])

Contributing

This is a volunteer open source projects and contributions are always welcome. Please, take a moment to read the contributing guidelines.

License

This project is licensed under the Apache License, Version 2.0 (the "License"); you may not use this project's files except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tad_mctc-0.1.1.tar.gz (87.0 kB view details)

Uploaded Source

Built Distribution

tad_mctc-0.1.1-py3-none-any.whl (136.3 kB view details)

Uploaded Python 3

File details

Details for the file tad_mctc-0.1.1.tar.gz.

File metadata

  • Download URL: tad_mctc-0.1.1.tar.gz
  • Upload date:
  • Size: 87.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for tad_mctc-0.1.1.tar.gz
Algorithm Hash digest
SHA256 a4788e4bc6a4512f8592b49155e19c32ab741fecc72b006eae1221e150a501dc
MD5 ae526ce7a5fadbb02b8724d48c4f9d68
BLAKE2b-256 d3c21b3fc6bf51ecd4ef648d7caa0115f5ae11fc9f93f3dc0a8c31dc9d34a348

See more details on using hashes here.

File details

Details for the file tad_mctc-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: tad_mctc-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 136.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for tad_mctc-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 fab36918f316baba6ff70d2c5cc5f2c8db45044d686400b357adb404cf3bde3e
MD5 2821900846dbff367e1cab956fb6937b
BLAKE2b-256 234dd44633209a613340bd0eaf1e196aea8a78ae2bf0b186f7837aad27c9b75a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page